Pada ujian Seleksi Bersama Masuk Perguruan Tinggi Negeri [SBMPTN] tahun 2017 siswa dibagi menjadi beberapa kelompok ujian. Diantaranya Kelompok Ujian SAINTEK, Kelompok Ujian SOSHUM, dan Kelompok ujian campuran. Jika pada kurun saya kelompok ujian ini dikenal dengan Kelompok IPA [SAINTEK], kelompok IPS [SOSHUM] dan kelompok IPC [campuran]
Pada kelompok ujian SAINTEK [Sains dan Teknologi] akan mendapat bahan ujian TKPA [Tes Kemampuan dan TKD SAINTEK. Untuk kelompok ujian SOSHUM [Sosial dan Humaniora] akan mendapat bahan ujian TKPA dan TKD SOSHUM. Sedangkan untuk kelompok adonan akan mendapat bahan ujian TKPA, TKD SAINTEK dan TKD SOSHUM.
TKPA yang abreviasi dari Tes Kemampuan dan Potensi Akademik dan yang diujikan pada TKPA terdiri atas Tes Kemampuan Verbal, Numerikal, Vigural, Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris.
Untuk TKD SAINTEK yang diujikan yaitu mata pelajaran Matematika, Biologi, Fisika, dan Kimia. Sedangkan untuk TKD SOSHUM yang diujikan yaitu mata pelajaran Sosiologi, Sejarah, Geografi dan Ekonomi.
Diskusi kali ini kita pilih dari soal SBMPTN 2017 TKD SAINTEK arahan naskah 106 mata pelajaran matematika, untuk mendapat soalnya secara lengkap untuk semua mata pelajaran yang diujikan silahkan d0wnl0ad disini. Kemarin-kemarin ini disebut dengan istilah Matematika IPA, dimana kalau kita bisa benar 4 atau 5 saja dari 15 soal sudah masuk kategori baik. Mari kita coba diskusikan
Soal SBMPTN 2017 Kode 106 No.1
Jika $a$ dan $b$ memenuhi $\begin{cases}\dfrac{9}{a+2b}+\dfrac{1}{a-2b}=2 \\ \dfrac{9}{a+2b}-\dfrac{2}{a-2b}=-1\end{cases}$ maka $a-b^2=\ldots$
$(A)\ 1$
$(B)\ 2$
$(C)\ 3$
$(D)\ 5$
$(E)\ 9$
Misalkan $x=\dfrac{1}{a+2b}$ dan $y=\dfrac{1}{a-2b}$ maka sistem persamaan pada soal sanggup ditulis menjadi
\begin{split}
9x+y & = 2\\
9x-2y & = -1
\end{split}
Dengan mengeliminasi atau substitusi kedua sistem persamaan di atas diperoleh $x=\dfrac{1}{9}$ dan $y=1$. Lalu kita substitusi kembali nilai $x$ dan nilai $y$ pada pemisalan diawal, sehingga kita peroleh;
$\begin{split}
& \dfrac{1}{a+2b} = \dfrac{1}{9} \Rightarrow a+2b=9\\
& \dfrac{1}{a-2b} = 1 \Rightarrow a-2b=1
\end{split}$
Sama menyerupai sebelumnya dengan mengeliminasi atau substitusi kedua sistem persamaan di atas kita peroleh $a=5$ dan $b = 2$.
Kaprikornus $a-b^2\ = (5)-(2)^2\ = 1$
$\therefore$ Pilihan yang sesuai yaitu $(A).\ 1$
Soal SBMPTN 2017 Kode 106 No.2
Seorang pelajar berencana untuk menabung di koperasi yang manfaatnya dihitung setiap semester. Apabila jumlah tabungannya menjadi dua kali lipat dalam $5$ tahun, maka besar tingkat suku bunga per tahun yaitu ...
$(A)\ 2(\sqrt[10]{2}-1)$
$(B)\ 2(\sqrt[5]{2}-1)$
$(C)\ 2(\sqrt{2})$
$(D)\ 2(\sqrt[5]{2})$
$(E)\ 2(\sqrt[10]{2})$
Untuk menghitung suku bunga pada soal diatas kita pakai dengan perhitungan bunga majemuk. Pada simpulan $n$ tahun, dengan suku bunga $R$ dan modal semula $P$ akan terkumpul menjadi sejumlah $S_{n}=P(1 + R)^{n}$.
Jika kita hubungkan pada soal, misalkan tabungan awalnya $= P$, suku bunga yang didapat sebesar $= R$, maka sehabis $5$ tahun atau $10$ semester tabungannya sanggup kita hitung sebagai berikut;
$\begin{split}S_{n} &=P(1 + R)^{n}\\
S_{10} &=P(1 + R)^{10}\\
2P &=P(1 + R)^{10}\\
2 &=(1 + R)^{10}\\
\sqrt[10]{2} &=(1 + R)\\
\sqrt[10]{2}-1 &=R\\
\end{split}$
Suku bunga yang kita peroleh diatas yaitu suku bunga per semester, jadi suku bunga per tahun yaitu $2R = 2(\sqrt[10]{2}-1)$
$\therefore$ Pilihan yang sesuai yaitu $(A).\ 2(\sqrt[10]{2}-1)$
Soal SBMPTN 2017 Kode 106 No.3
Himpunan penyelesaian dari $\dfrac{x}{x+x^{2}}\geq -\dfrac{x}{x-x^{2}}$ adalah...
$(A) \left \{x\mid -\dfrac{1}{2}\leq x \lt; 0\ atau\ 0 \lt; x \leq -\dfrac{1}{2} \right\}$
$(B) \left \{x\mid -\dfrac{1}{2} \lt; x \lt; 0\ atau\ 0 \lt; x \lt; 1 \right\}$
$(C) \left \{x\mid -\dfrac{1}{2}\leq x \lt; 0\ atau\ 0 \lt; x \lt; 1 \right\}$
$(D) \left \{x\mid 1 \lt; x \lt; 0\ atau\ 0 \lt; x \leq \dfrac{1}{2} \right\}$
$(E) \left \{x\mid -1 \lt; x \lt; 0\ atau\ 0 \lt; x \lt; 1 \right\}$
Dengan sedikit manipulasi aljabar, pertidaksamaan di atas kita rubah menjadi menyerupai berikut ini;
$\begin{align}
\dfrac{x}{x+x^{2}} &\geq -\dfrac{x}{x-x^{2}}\\
\dfrac{x}{x^{2}+x} &\geq \dfrac{x}{x^{2}-x}\\
\dfrac{x}{x^{2}+x} - \dfrac{x}{x^{2}-x} &\geq 0\\
\dfrac{x^{3}-x^{2}-(x^{3}+x^{2})}{(x^{2}+x)(x^{2}-x)} &\geq 0\\
\dfrac{-2x^{2}}{(x^{2}+x)(x^{2}-x)} &\geq 0\\
\dfrac{2x^{2}}{(x^{2}+x)(x^{2}-x)} &\leq 0\\
\dfrac{2x^{2}}{x(x+1)x(x-1)} &\leq 0\\
\dfrac{2x^{2}}{x^{2}(x+1)(x-1)} &\leq 0\\
\end{align}$
Syarat pertama dari pertidaksamaan di atas yaitu $x^{2}(x+1)(x-1)\neq 0$ maka $x \neq 0$; $x \neq -1$; dan $x \neq 1$.
Berikutnya kita cari batasan atau pembuat nol pada pembilang dan penyebut, yaitu:
- Pembuat nol pembilang yaitu $2x^{2}=0$ maka $x=0$
- Pembuat nol penyebut yaitu $x^{2}(x+1)(x-1)$ maka $x=0$, $x=-1$ dan $x=1$
$x\leq -1$ | $-1\leq x \leq 0$ | $0\leq x\leq 1$ | $x\geq 1$.
misal kita pilih dari kawasan $x\geq 1$ yang kita uji $x=3$ pada pertidaksamaan
$\begin{align}
\dfrac{2x^{2}}{x^{2}(x+1)(x-1)} &= \dfrac{2(3)^{2}}{(3)^{2}(3+1)(3-1)}\\
&= \dfrac{18}{9(4)(2)}= \dfrac{1}{4} \\
& \therefore \text{artinya} \geq 0
\end{align}$
Kesimpulan yang kita peroleh kawasan $x\geq 1$ bukan Himpunan Penyelesaian soal, sebab pada kawasan ini pertidaksamaan lebih dari atau sama dengan nol ($\geq 0$).
Dengan cara yang sama, kita akan memperoleh kawasan yang kesannya kurang dari atau sama dengan nol ($\leq 0$) yaitu pada kawasan $-1\leq x\leq0$, dan $0\leq x\leq 1$.
(*cara pilar perhatikan gambar, setiap melewati batas faktor pangkat ganjil tanda berubah dan setiap melewati batas faktor pangkat genap tanda tetap)
Lalu dengan memperhatikan syarat pertama sebuah cuilan yaitu $x \neq 0$; $x \neq -1$; dan $x \neq 1$, maka himpunan penyelesaian yang memenuhi yaitu $-1 \lt x \lt 0\ \text{atau}\ 0 \lt x \lt 1$
$\therefore$ Pilihan yang sesuai yaitu $(E).\ \left \{x\mid -1 \lt x \lt 0\ atau\ 0 \lt x \lt 1 \right\}$
Soal SBMPTN 2017 Kode 106 No.4
Diketahui vektor $a,\ u,\ v,\ w$ yaitu vektor di bidang kartesius dengan $v=w-u$ dan sudut antara $u$ dan $w$ yaitu $60^{\circ}$. Jika $a=4v$ dan $a \cdot u=0$ maka...
$(A) \left \| u \right \|=2\left \| v \right \|$
$(B) \left \| v \right \|=2\left \| w \right \|$
$(C) \left \| v \right \|=2\left \| u \right \|$
$(D) \left \| w \right \|=2\left \| v \right \|$
$(E) \left \| w \right \|=2\left \| u \right \|$
$\begin{split}
\Rightarrow & a = 4v\\
& a = 4(w-u)\\
& a = 4w-4u\\
\\
\Rightarrow a \cdot u & = 0\\
(4w-4u)u & = 0\\
4w \cdot u - 4u^{2}& = 0 \\
4w \cdot u & = 4u^{2} \\
w \cdot u & = u^{2} \\
\end{split}$
Sudut antara vektor $u$ dan $w$ yaitu $60^{\circ}$ sehingga berlaku:
$\begin{split}
u \cdot w &=\left \| u \right \| \cdot \left \| w \right \| cos 60^{\circ} \\
u \cdot w &=\left \| u \right \| \cdot \left \| w \right \| \dfrac{1}{2} \\
u^{2} &=\left \| u \right \| \cdot \left \| w \right \| \dfrac{1}{2} \\
\left \| u \right \|^{2} &=\left \| u \right \| \cdot \left \| w \right \| \dfrac{1}{2} \\
\left \| u \right \|&= \left \| w \right \| \dfrac{1}{2} \\
2 \left \| u \right \|&= \left \| w \right \|
\end{split}$
$\therefore$ Pilihan yang sesuai yaitu $(E).\ \left \| w \right \|=2\left \| u \right \|$
Soal SBMPTN 2017 Kode 106 No.5
Diketahui persamaan $sec\ \theta \left (sec\ \theta \left ( sin\ \theta \right )^{2}+\dfrac{2}{3}\sqrt{3}\ sin\ \theta \right ) =1$. Jika $\theta_{1}$ dan $\theta_{2}$ yaitu solusi dari persamaan tersebut, maka $tan\ \theta_{1} \cdot tan\ \theta_{2}= \cdots$
$(A)\ -1$
$(B)\ -0.5$
$(C)\ 0$
$(D)\ 0.5$
$(E)\ 1$
$\begin{split}
sec\ \theta \left (sec\ \theta \left ( sin\ \theta \right )^{2}+\dfrac{2}{3}\sqrt{3}\ sin\ \theta \right ) &=1\\
\dfrac{1}{cos\ \theta} \left (sec\ \theta \left ( sin\ \theta \right )^{2}+\dfrac{2}{3}\sqrt{3}\ sin\ \theta \right ) &=1\\
\left (sec\ \theta \left ( sin\ \theta \right )^{2}+\dfrac{2}{3}\sqrt{3}\ sin\ \theta \right )&=cos\ \theta\\
\left (\dfrac{1}{cos\ \theta} \left ( sin\ \theta \right )^{2}+\dfrac{2}{3}\sqrt{3}\ sin\ \theta \right )&=cos\ \theta\\
sin\ \theta \left (\dfrac{sin\ \theta}{cos\ \theta}+\dfrac{2}{3}\sqrt{3}\ \right )&=cos\ \theta\\
\dfrac{sin\ \theta}{cos\ \theta}+\dfrac{2}{3}\sqrt{3}&=\dfrac{cos\ \theta}{sin\ \theta}\\
tan\ \theta+\dfrac{2}{3}\sqrt{3}&=\dfrac{1}{tan\ \theta}\\
(tan\ \theta)^{2}+\dfrac{2}{3}\sqrt{3}\ tan\ \theta &=1\\
(tan\ \theta)^{2}+\dfrac{2}{3}\sqrt{3}\ tan\ \theta -1 &=0\\
\therefore tan\ \theta_{1} \cdot tan\ \theta_{2} =-1
\end{split}$
$\therefore$ Pilihan yang sesuai yaitu $(A).\ -1$
Soal SBMPTN 2017 Kode 106 No.6
Persamaan salah satu asimtot dari hiperbola $4y^{2}-x^{2}+16y+6x+3=0$ adalah...
$(A)\ x+2y+5=0$
$(B)\ x-2y+1=0$
$(C)\ x-2y+7=0$
$(D)\ x+2y+1=0$
$(E)\ x+2y-5=0$
Asimtot dari hiperbola ini jadi salah satu bahan yang sangat fresh di SBMPTN atau mungkin soal yang tidak diduga bakal dimunculkan oleh panitia pembuat soal SBMPTN.
Persamaan hiperbola secara umum ada 2 yaitu;
- Hiperbola Vertikal [Tegak]
- persamaan umumnya yaitu $\dfrac{(y-k)^{2}}{a^{2}}-\dfrac{(x-h)^{2}}{b^{2}}=1$
- Pusat $(h,k)$
- Persamaan asimtotnya yaitu $\dfrac{(y-k)}{a}=\pm \dfrac{(x-h)}{b}$ atau $y-k=\pm \dfrac{a}{b}(x-h)$
- Hiperbola Horizontal [Mendatar]
- persamaan umumnya yaitu $\dfrac{(x-h)^{2}}{a^{2}}-\dfrac{(y-k)^{2}}{b^{2}}=1$
- Pusat $(h,k)$
- Persamaan asimtotnya yaitu $\dfrac{(x-h)}{a}=\pm \dfrac{(y-k)}{b}$ atau $y-k=\pm \dfrac{b}{a}(x-h)$
$\begin{split}
4y^{2}-x^{2}+16y+6x+3 & =0\\
4y^{2}+16y-x^{2}+6x+3 & =0\\
(2y+4)^{2}-16-(x-3)^{2}+9+3 &=0\\
(2y+4)^{2}-(x-3)^{2}&=4\\
\dfrac{(2y+4)^2}{4}-\dfrac{(x-3)^2}{4}&=1\\
\dfrac{2^{2}(y+2)^2}{2^{2}}-\dfrac{(x-3)^2}{2^{2}}&=1\\
\dfrac{(y+2)^2}{1^{2}}-\dfrac{(x-3)^2}{2^{2}}&=1\\
\end{split}$
Persamaan asimtot hiperbola di atas adalah
$\begin{split}
\dfrac{(y+2)}{1^{2}}&=\pm \dfrac{(x-3)}{2}\\
y+2 &=\pm \dfrac{(x-3)}{2}\\
2y+4 &=\pm (x-3)\\
\Rightarrow & 2y-x+7=0\\
\Rightarrow & 2y+x+1=0\ \D \\
\end{split}$
$\therefore$ Pilihan yang sesuai yaitu $(D).\ 0$
Soal SBMPTN 2017 Kode 106 No.7
Misalkan $f(x)=3x^{3}-9x^{2}+4bx+18=(x-2)g(x)+2b$ maka $g(-2)= \cdots$
$(A)\ 12$
$(B)\ 10$
$(C)\ 8$
$(D)\ 6$
$(E)\ 4$
$\begin{split}
f(x)&=3x^{3}-9x^{2}+4bx+18\\
f(x)&=(x-2)g(x)+2b\\
3(2)^{3}-9(2)^{2}+4b(2)+18 &=(2-2)g(2)+2b\\
24-36+8b+18 &=2b\\
-12+8b+18 &=2b\\
6b &=-6\\
b &=-1\\
f(x)&=3x^{3}-9x^{2}-4x+18\\
f(x)&=(x-2)g(x)-2\\
3(-2)^{3}-9(-2)^{2}-4(-2)+18 &= (-2-2)g(-2)-2\\
-24-36+8+18 &= (-4)g(-2)-2\\
-60+26+2 &= (-4)g(-2)\\
-32 &= (-4)g(-2)\\
8 &= g(-2)
\end{split}$
$\therefore$ Pilihan yang sesuai yaitu $(C).\ 8$
Soal SBMPTN 2017 Kode 106 No.8
Diketahui suatu bundar kecil dengan radius $3\sqrt{2}$ melalui sentra suatu bundar besar yang memiliki radius $6$. Ruas garis yang menghubungkan dua titik potong bundar merupakan diameter dari bundar kecil, menyerupai pada gambar. Luas kawasan irisan kedua bundar yaitu ...
$(A)\ 18\pi+18$
$(B)\ 18\pi-18$
$(C)\ 14\pi+14$
$(D)\ 14\pi-15$
$(E)\ 10\pi+10$
Luas kawasan irisan kedua lingkaran kalau kita arsir kurang lebih gambarnya menjadi sebagai berikut;
$\begin{split}
\Rightarrow Luas\ Biru & = \frac{1}{2} \pi r^{2} \\
& = \frac{1}{2} \pi (3\sqrt{2})^{2}\\
& = \frac{1}{2} \pi (18)\\
& = 9 \pi
\end{split}$
Untuk menghitung luas kawasan kuning yang merupakan luas tembereng bundar yang besar, sanggup digunakan dengan menghitung selisih luas juring $ABC$ dengan luas segitiga $ABC$.
$\begin{split}
\Rightarrow Luas\ Juring ABC & = \frac{90^{\circ}}{360^{\circ}} \pi r^{2} \\
& = \frac{1}{4} \pi (6)^{2} \\
& = \frac{1}{4} \pi 36 \\
& = 9 \pi\\
\Rightarrow Luas\ \bigtriangleup ABC & = \frac{1}{2} 6 \cdot 6 \\
& = 18 \\
\Rightarrow Luas\ Tembereng & = 9 \pi - 18
\end{split}$
Luas irisan bundar $=$ luas biru $+$ luas tembereng $=9 \pi +9 \pi - 18=18 \pi - 18$
$\therefore$ Pilihan yang sesuai yaitu $(B).\ 18\pi-18$
Soal SBMPTN 2017 Kode 106 No.9
Jika $\int_{-4}^4 f(x)(\sin x + 1)\ dx = 8$, dengan $f(x)$ fungsi genap dan $\int_{-2}^4 f(x) dx = 4$, maka $\int_{-2}^0 f(x)\ dx=\cdots$
$(A)\ 0$
$(B)\ 1$
$(C)\ 2$
$(D)\ 3$
$(E)\ 4$
Sebuah fungsi dikatakan fungsi genap
- Berlaku $f(-x)=f(x)$
- Bentuk grafik fungsi, simetris dengan sentra sumbu $y$
- Jika digunakan pada integral, ciri fungsi genap ini yaitu $\int_{-a}^a f(x)dx =2\int_{0}^a f(x)dx $ Silahkan dibuktikan ciri fungsi genap diatas untuk $f(x)=x^{2}$ atau $f(x)=cos\ x$
- Berlaku $f(-x)=-f(x)$
- Bentuk grafik fungsi, simetris dengan sentra $(0,0)$
- Jika digunakan pada integral, kekhususan fungsi ganjil ini yaitu $\int_{-a}^a f(x)dx =0$. Silahkan dibuktikan ciri fungsi ganjil diatas untuk $f(x)=x^{3}$ atau $f(x)=sin\ x$.
Kembali kepada soal,
$\begin{split}
& \int_{-4}^4 f(x)(\sin x + 1)\ dx = 8\\
& \int_{-4}^4 \left (f\left (x\right ) \sin x + f\left (x\right ) \right )\ dx = 8\\
& \int_{-4}^4 f(x) \sin x\ dx + \int_{-4}^4 f(x)\ dx = 8
\end{split}
Karena $f(x)$ fungsi genap dan $\sin x$ fungsi ganjil maka $f(x) \sin x$ merupakan fungsi ganjil sehingga berlaku $\int_{-4}^4 f(x) \sin x\ dx=0$ dan $\int_{-4}^4 f(x)\ dx = 2 \int_{0}^4 f(x)\ dx$.
\begin{split}
\int_{-4}^4 f(x) \sin x\ dx + \int_{-4}^4 f(x)\ dx &= 8\\
0 + \int_{-4}^4 f(x)\ dx &= 8\\
\int_{-4}^4 f(x)\ dx &= 8\\
2 \int_{0}^4 f(x)\ dx &= 8\\
\int_{0}^4 f(x)\ dx &= 4\\
\int_{0}^4 f(x)\ dx &= 4\\
\Rightarrow \int_{-2}^4 f(x) dx = 4\\
\Rightarrow \int_{-2}^0 f(x) dx + \int_{0}^4 f(x)\ dx = 4\\
\Rightarrow \int_{-2}^0 f(x) dx + 4 = 4\\
\Rightarrow \int_{-2}^0 f(x) dx = 0
\end{split}$
$\therefore$ Pilihan yang sesuai yaitu $(A).\ 0$
Soal SBMPTN 2017 Kode 106 No.10
$\lim\limits_{x \to 0} \dfrac{sec\ x+cos\ x-2}{x^{2}\ sin^{2}x}=\cdots$
$(A)\ -\dfrac{1}{8}$
$(B)\ -\dfrac{1}{4}$
$(C)\ 0$
$(D)\ \dfrac{1}{4}$
$(E)\ \dfrac{1}{8}$
$\begin{split}
& \lim\limits_{x \to 0} \dfrac{sec\ x+cos\ x-2}{x^{2}\ sin^{2}x}\\
= & \lim\limits_{x \to 0} \dfrac{\dfrac{1}{cos\ x}+\dfrac{cos^{2}x}{cos\ x}-\dfrac{2\ cos\ x}{cos\ x}}{x^{2}\ sin^{2}x}\\
= & \lim\limits_{x \to 0} \dfrac{cos^{2}-2\ cos\ x+1}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \lim\limits_{x \to 0} \dfrac{\left (cos\ x-1 \right )^{2}}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \lim\limits_{x \to 0} \dfrac{\left (-2sin^{2}(\dfrac{1}{2}x) \right )^{2}}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \lim\limits_{x \to 0} \dfrac{4\ sin^{2}(\dfrac{1}{2}x)\ sin^{2}(\dfrac{1}{2}x)}{x^{2}\ sin^{2}x\ cos\ x}\\
= & \lim\limits_{x \to 0} 4\ \cdot \dfrac{sin^{2}(\dfrac{1}{2}x)}{x^{2}} \cdot \dfrac{sin^{2}(\dfrac{1}{2}x)}{sin^{2}x} \cdot \dfrac{1}{cos\ x}\\
= & 4\ \cdot \dfrac{1}{4} \cdot \dfrac{1}{4} \cdot \dfrac{1}{1}\\
= & \dfrac{1}{4}
\end{split}$
$\therefore$ Pilihan yang sesuai yaitu $(D).\ \dfrac{1}{4}$
Soal SBMPTN 2017 Kode 106 No.11
$\lim\limits_{x \to \infty} \dfrac{x^{4}\ sin \left (\dfrac{1}{x}\right )+x^{2}}{1+x^{3}}=\cdots$
$\begin{align}
(A).\ & \text{Tidak ada limitnya} \\
(B).\ & 0 \\
(C).\ & 1 \\
(D).\ & - \infty \\
(E).\ & \infty
\end{align}$
Untuk menuntaskan soal limit ini kita gunakan sedikit manipulasi aljabar, yaitu dengan memisalkan $\dfrac{1}{x}=m$ maka $\dfrac{1}{m}=x$. Karena $x \to \infty$ maka $m \to 0$.
Soal $\lim\limits_{x \to \infty} \dfrac{x^{4}\ sin\left (\dfrac{1}{x} \right )+x^{2}}{1+x^{3}}$ bisa kita tuliskan menjadi
$\begin{align}
& \lim\limits_{m \to 0} \dfrac{\left (\dfrac{1}{m} \right )^{4}\ sin\ m+\left (\dfrac{1}{m} \right )^{2}}{1+\left (\dfrac{1}{m} \right )^{3}}\\
& = \lim\limits_{m \to 0} \dfrac{\dfrac{1}{m^{4}}\ sin\ m+\dfrac{1}{m^{2}}}{1+\dfrac{1}{m^{3}}}\\
& = \lim\limits_{m \to 0} \dfrac{\dfrac{sin\ m}{m^{4}}+\dfrac{1}{m^{2}}}{1+\dfrac{1}{m^{3}}} \cdot \dfrac{m^{3}}{m^{3}}\\
& = \lim\limits_{m \to 0} \dfrac{\dfrac{sin\ m}{m}+m}{m^{3}+1}\\
& = \dfrac{1+0}{0+1}\\
& = 1
\end{align}$
$\therefore$ Pilihan yang sesuai yaitu $(C).\ 1$
Soal SBMPTN 2017 Kode 106 No.12
Diberikan dua fungsi rasional $y=\dfrac{3x^{2}-3x+7}{x^{2}-5x+4}$ dan $y=\dfrac{ax^{2}-3x+2}{bx^{2}+2x-3},\ a \gt 0$. Jika diketahui kedua kurva memiliki sebuah asimtot tegak yang sama dan asimtot datar keduanya berjarak $4$ satuan, maka $a= \cdots$
$(A)\ 2$
$(B)\ 3$
$(C)\ 5$
$(D)\ 6$
$(E)\ 7$
Fungsi Rasional $y=\dfrac{ax^{2}+bx+c}{px^{2}+qx+r}$
- Asimtot Mendatar yaitu garis $y=\dfrac{a}{p}$
- Asimtot Tegak yaitu garis $x=x_{1}$ dan $x=x_{2}$ kalau penyelesaian $px^{2}+qx+r=0$ yaitu $x_{1}$ dan $x_{2}$
Dari dua fungsi rasional pada soal $y_{1}=\dfrac{3x^{2}-3x+7}{x^{2}-5x+4}$ dan $y_{2}=\dfrac{ax^{2}-3x+2}{bx^{2}+2x-3},\ a \gt 0$. Asimtot mendatar $y_{1}$ yaitu $y=3$ dan berjarak $4$ satuan dengan asimtot mendatar $y_{2}$, sehingga asimtot mendatar $y_{2}$ yang mungkin yaitu $y=-1$ atau $y=7$.
Asimtot tegak $y_{1}$ yaitu $x=1$ dan $x=4$, salah satu asimtot tegak $y_1$ merupakan asimtot tegak $y_{2}$ sebab disampaikan pada soal "kedua kurva memiliki sebuah asimtot tegak yang sama".
Kita pilih asimtot yang sama yaitu $x=1$ sehingga pada $y_{2}$ penyebut $bx^{2}+2x-3$ yaitu $0$ untuk $x=1$.
$bx^{2}+2x-3=0$
$b(1)^{2}+2(1)-3=0$
$b-1=0$
$b=1$
Karena $b=1$ maka $y_{2}=\dfrac{ax^{2}-3x+2}{x^{2}+2x-3}$ dan asimtot mendatar yaitu $y= \dfrac{a}{1}=a$.
Nilai $y=a$ yang memenuhi pada pilihan yaitu $7$
$\therefore$ Pilihan yang sesuai yaitu $(E).\ 7$
Soal SBMPTN 2017 Kode 106 No.13
Jika $f(x)=sin(sin^{2}x)$, maka $f'(x)=\ldots$
$(A)\ 2\ sin\ x \cdot cos(sin^{2}x)$
$(B)\ 2\ sin\ 2x \cdot cos(sin^{2}x)$
$(C)\ sin^{2}x \cdot cos(sin^{2}x)$
$(D)\ sin^{2}2x \cdot cos(sin^{2}x)$
$(E)\ sin\ 2x \cdot cos(sin^{2}x)$
Untuk mendapat turunan pertama dari fungsi diatas kita coba gunakan hukum rantai, yaitu:
$f'(x) = \dfrac{df}{dx} = \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}$
Soal:$f(x)=sin(sin^{2}x)$
Misal $u=sin\ x$
$\Rightarrow \dfrac{du}{dx}=cos\ x$
Soal:$f(x)=sin(u^{2})$
Misal $v=u^{2}$
$\Rightarrow \dfrac{dv}{du}=2u$
Soal:$f(x)=sin(v)$
$\Rightarrow \dfrac{df}{dv}=cos(v)$
$\begin{split}
f'(x) & = \dfrac{df}{dx} = \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}\\
& =cos(v) \cdot 2u \cdot cos\ x\\
& =cos(u^{2}) \cdot 2(sin\ x) \cdot cos\ x\\
& =cos(sin^{2}x) \cdot 2(sin\ x) \cdot cos\ x\\
& =cos(sin^{2}x) \cdot sin\ 2x\\
& = sin\ 2x \cdot cos(sin^{2}x)
\end{split}$
$\therefore$ Pilihan yang sesuai yaitu $(E).\ sin\ 2x \cdot cos(sin^{2}x)$
Soal SBMPTN 2017 Kode 106 No.14
Jika garis singgung dari $f(x)=\dfrac{x}{x^{2}cos\ x}$ dititik $x=\pi$ memotong garis $y=x+c$ di titik $(\pi,0)$. Nilai $c$ adalah...
$(A)\ -\dfrac{1}{4}\pi$
$(B)\ -\dfrac{1}{2}\pi$
$(C)\ -\pi $
$(D)\ \dfrac{1}{2}\pi $
$(E)\ \pi$
Untuk soal ini, fungsi $f(x)=\dfrac{x}{x^{2}cos\ x}$ tampaknya tidak terlalu diperhitungkan sebab dari kalimat garis singgung memotong garis $y=x+c$ di titik $(\pi,0)$ artinya $(\pi,0)$ akan memenuhi untuk garis singgung kurva dan garis $y=x+c$.
Karena $(\pi,0)$ berlaku untuk $y=x+c$ maka $0=\pi+c$, diperoleh nilai $c=-\pi$
$\therefore$ Pilihan yang sesuai yaitu $(C).\ -\pi$
Soal SBMPTN 2017 Kode 106 No.15
Di dalam kotak I terdapat $12$ bola putih dan $3$ bola merah. Di dalam kotak II terdapat $4$ bola putih dan $4$ bola merah. Jika dari kotak I dan kotak II masing-masing diambil $2$ bola satu per satu dengan pengembalian, maka peluang yang terambil $1$ bola merah yaitu ...
$(A)\ 0,04$
$(B)\ 0,10$
$(C)\ 0,16$
$(D)\ 0,32$
$(E)\ 0,40$
Kemungkinan terambil 1 bola merah yaitu dari kotak I terambil satu merah dan satu putih dan dari kotak II terambil keduanya putih atau dari kotak I terambil keduanya putih dan dari kotak II terambil satu merah dan satu putih
Kasus I: dari kotak I terambil satu merah dan satu putih dan dari kotak II terambil keduanya putih.
Dari kotak I terambil satu merah dan satu putih: Jika dalam kalimat bisa kita tuliskan "putih pada pengambilan pertama dan merah pada pengambilan kedua atau merah pada pengambilan pertama dan putih pada pengambilan kedua" secara matematik bisa kita tuliskan peluangnya yaitu $\dfrac{3}{15}\cdot\dfrac{12}{15}+\dfrac{12}{15}\cdot\dfrac{3}{15}=\dfrac{8}{25}$
Dari kotak II terambil keduanya putih: Jika dalam kalimat bisa kita tuliskan "putih pada pengambilan pertama dan putih pada pengambilan kedua" secara matematik bisa kita tuliskan peluangnya yaitu $\dfrac{4}{8}\cdot\dfrac{4}{8}=\dfrac{1}{4}$
Sehingga peluang terjadinya kasus pertama yaitu $\dfrac{8}{25} \cdot \dfrac{1}{4}= \dfrac{2}{25}$
Kasus II: dari kotak I terambil keduanya putih dan dari kotak II terambil satu merah dan satu putih.
Dari kotak I terambil keduanya putih: Jika dalam kalimat bisa kita tuliskan "putih pada pengambilan pertama dan putih pada pengambilan kedua" secara matematik bisa kita tuliskan peluangnya yaitu $\dfrac{12}{15}\cdot \dfrac{12}{15}=\dfrac{16}{25}$
Dari kotak II terambil satu merah satu putih: Jika dalam kalimat bisa kita tuliskan "putih pada pengambilan pertama dan merah pada pengambilan kedua atau merah pada pengambilan pertama dan putih pada pengambilan kedua" secara matematik bisa kita tuliskan peluangnya yaitu $ \dfrac{4}{8}\cdot\dfrac{4}{8}+\dfrac{4}{8}\cdot\dfrac{4}{8}=\dfrac{2}{4}$
Sehingga peluang terjadinya kasus kedua yaitu $\dfrac{16}{25} \cdot \dfrac{2}{4} = \dfrac{8}{25}$
Kaprikornus peluang yang terambil 1 bola merah yaitu peluang kasus pertama atau peluang kasus kedua $\dfrac{2}{25}+\dfrac{8}{25}=\dfrac{10}{25}=0,4$
$\therefore$ Pilihan yang sesuai yaitu $(E).\ 0,4$
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Soal secara lengkap untuk mata pelajaran yang lain bisa di d0wnl0ad (*Soal Lengkap). Beberapa pembahasan soal SBMPTN 2017 Matematika SAINTEK Kode 106 di atas yaitu coretan kreatif siswa pada lembar balasan pembahasan Penilaian Harian, pembahasan Quiz atau pada dikala presentasi diskusi di kelas.
Apabila ada masukan yang sifatnya membangun terkait dilema alternatif penyelesaian atau request pembahasan soal, silahkan disampaikan😊CMIIW
Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊
Video pilihan khusus untuk Anda 😊 Belajar pertidaksamaan Bentuk akar;
EmoticonEmoticon