Pola bilangan yakni sebuah bentuk urutan suatu angka dengan karakteristik tertentu. Antara bilangan pertam dan kedua, bilangan kedua dan ketiga, bilangan ketiga dan keempat dan seterusnya mempunyai sebuah ciri khas khusus. Dengan ciri pola bilangan khusus tersebut bisa ditentukan angka pada urutan ke berapanya.
Soal Soal atau permasalaha ini sering ditemui dalam pembelajaran matematika. Sebut saja pada bahan ' Pola Bilangan' untuk kelas 7 pada kurikulum 2013, atau lebih lanjut pada topik barisan dan deret aritmatika. Permasalahan ini juga merupakan salah satu bentuk kemampuan dasar. Soal tipe ini juga ditemukan untuk soal tes kecerdasan / tes TPA/ tes IQ dan sejenisnya. Berikut ini akan dibahas beberapa pola bilangan yang sering dijumpai.
Pola Bilangan Ganjil
Bentuk pola pada bilangan ganjil ini terurut sebagai berikut : 1,3,5,7,9. Pola tersebut merupakan urutan bilangan ganjil. Untuk soal pola bilangan yang ditanyakan angka berapa pada deret ke-10. Bisa diselesaikan dengan melanjutkan urutan bilangan tersebut sampai 10 buah. Lalu bagaiman kalau ditanyakan angka ke- 200. Lumayan repotkan mengurutkan sampai 200 bilangan ganjil. Untuk mempermudah, bisa dipakai rumus pola bilangan ganjil :Un = 2n-1.
Sn = n2
Un = suku yang ditanya, n = angka ke berapa? Sn = jumlah bilangan sebanyak n-buah.
Penyelesaian : a) suku ke 300. n= 300. masukkan kerumus Un=2n-1 = 2(300)-1=599.
b) Jumlah artinya akan di cari S13. Gunakn rumus S. Sn= n2 maka diperoleh. S13 = 132 = 169.
c) Karena diketahui angka-sukunya 431. Kita akan mencari banyak sukunya. Gunakn rumus Un lagi. Un = 2n-1 ==> 431 = 2n -1 (selesaikan dengan operasi hitung) n = 216.
Pola Bilangan Genap
Pola Bilangan Segitiga
Pada pola bilangan segitiga ini akan sering ditemukan dalam bentuk gambar. Gambar bisa dilihat pada gambar di atas yang diberi nomor 3. Jika dibentuk dalam bentuk bilangan maka barisan bilangan ini 1,3,6,10.... Rumus pola bilangan segitiga : Un = 1/2 x n x (n+1). Rumus jumlah pola bilangan segitiga : Sn = 1/6 x n x (n+1) x (n+2).Pola Bilangan Persegi/ Pola Bilangan Kuadrat
Pola Bilangan Persegi Panjang
Pola Bilangan Aritmatika / Biasa
Un = a + (n-1) bContoh Soal : Pada deret bilangan berikut. 4, 7, 10,13.... a) Tentukan angka ke 31. b) Berapakah jumlah 21 angka pertama?
Sn = 1/2 x n ( 2a+(n-1)b)
a= angka awal. b = angka kedua - angka awal.
Penyelesaian ; a) 4, 7, 10, 13... a = 4. b = (7-4) = 3. n = 31. Gunakan rumus Un = a+ (n-1)b = 4+ (31-1).3 = 4+ 30x3 = 4+90 =94.
b) n =21.Gunakan rumus Sn = 1/2 x 21 x ( 2(4) + (21-1) 3)) = 1/2 x21 x( 8+ (20).3) = 1/2 x 21 x (8+60) = 1/2 x 21 x 86 =.. (hitung sendiri). Sumber http://www.marthamatika.com/
EmoticonEmoticon