Ujian Nasional berbasis komputer sudah semakin dekat. Salah satu cara untuk melihat bagaimana tingkat pemahaman kita terhadap materi-materi yang sudah dipelajari yakni dengan coba membahas soal-soal simulasi UNBK.
Soal-soal UNBK nanti memang $100\%$ tidak sama dengan soal-soal simulasi, tetapi soal simulasi UNBK ini menjadi tolak ukur dasar dalam mempelajari soal-soal yang akan diujikan pada ujian nasional. Meskipun soal UNBK nanti tidak sama persis dengan soal simulasi berikut ini tetapi aturan-aturan dasar atau teorema-teorema dalam mengerjakan soal secara umum masih sama, terkhusus dalam pelajaran matematika. Sehingga soal-soal simulasi UNBK ini sangat baik dijadikan latihan dasar sebagai latihan dalam bernalar.
Kemampuan bernalar sanggup naik jikalau dilatih dengan baik, kemapuan bernalar ketika ini sangat jadi perhatian, apalagi sebab perkembangan soal UNBK yang akan menggunakan beberapa soal HOTS (High Order Thinking Skils). Salah satu cara untuk sanggup menuntaskan soal HOTS yakni setidaknya kita sudah bisa menggunakan teorema-teorema dasar atau hukum dasar dalam mengerjakan soal sederhana atau soal LOTS (Low Order Thinking Skils), dimana untuk menuntaskan hanya sekedar mensubstitusi variabel-variabel dari rumus-rumus yang ada.
Berikut mari kita coba soal simulasi UNBK Matematika IPA 2020 paket A. Jangan lupa untuk berlatih juga dari soal simulasi UNBK Matematika IPA 2020 paket C dan soal simulasi UNBK Matematika IPA 2020 paket B, mari berlatih dan berdiskusi😉😊
1. Persamaan kuadrat $x^{2}-2hx+(3h-2)=0$ mempunyai dua akar tidak real. Batas-batas nilai $h$ yang memenuhi adalah...
$\begin{align}
(A)\ & h \lt -2\ \text{atau}\ h \gt -1 \\
(B)\ & h \lt -1\ \text{atau}\ h \gt 2 \\
(C)\ & h \lt 1\ \text{atau}\ h \gt 2 \\
(D)\ & 1 \lt h \lt 2 \\
(E)\ & -1 \lt h \lt 2
\end{align}$
Untuk persamaan kuadrat yang mempunyai akar-akar tidak real maka diskriminan kurang dari nol.
$\begin{align}
x^{2}-2hx+(3h-2) & = 0 \\
D & \lt 0 \\
b^{2}-4ac & \lt 0 \\
(-2h)^{2}-4(1)(3h-2)& \lt 0 \\
4h^{2}-12h+8 & \lt 0 \\
h^{2}-3h+2 & \lt 0 \\
(h-1)(h-2) & \lt 0 \\
\left[h=1 \right] & \left[h=2 \right] \\
1 \lt h \lt 2
\end{align}$
(*Jika masih kesulitan menuntaskan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat)
$\therefore$ Pilihan yang sesuai yakni $(D)\ 1 \lt h \lt 2$
2. Bentuk sederhana dari $\dfrac{2-2\ log^{2}\ ab}{1-log\ a^{5}b^{3}+2\ log\ a^{2}b}$ adalah...
$\begin{align}
(A)\ & log\ 10ab \\
(B)\ & 2log\ 10ab \\
(C)\ & log\ 20ab \\
(D)\ & log\ 10a^{2}b^{2} \\
(E)\ & 2log\ 10a^{2}b^{2} \\
\end{align}$
Untuk menyederhanakan bentuk aljabar pada soal di atas, kita perlu mengetahui sifat-sifat dasar logaritma.
$\begin{align}
& \dfrac{2-2\ log^{2}\ ab}{1-log\ a^{5}b^{3}+2\ log\ a^{2}b} \\
& = \dfrac{2\left (1- log^{2}\ ab \right )}{1-log\ a^{5}b^{3}+log\ a^{4}b^{2}} \\
& = \dfrac{2\left (1- log^{2}\ ab \right )}{1+log\ a^{4}b^{2}-log\ a^{5}b^{3}} \\
& = \dfrac{2\left (1+ log\ ab \right )\left (1- log\ ab \right )}{1+log\ \dfrac{a^{4}b^{2}}{a^{5}b^{3}}} \\
& = \dfrac{2\left (1+ log\ ab \right )\left (1- log\ ab \right )}{1+log\ a^{-1}b^{-1}} \\
& = \dfrac{2\left (1+ log\ ab \right )\left (1- log\ ab \right )}{1+log\ (ab)^{-1}} \\
& = \dfrac{2\left (1+ log\ ab \right )\left (1- log\ ab \right )}{1-log\ ab} \\
& = 2\left (1+ log\ ab \right ) \\
& = 2\left (log\ 10+ log\ ab \right ) \\
& = 2\ log\ 10ab
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(B)\ 2log\ 10ab$
3. Grafik fungsi kuadrat menyerupai tampak pada gambar memotong sumbu $X$ di titik...
$\begin{align}
(A)\ & (-1,0)\ \text{dan}\ (5,0) \\
(B)\ & (-1,0)\ \text{dan}\ (6,0) \\
(C)\ & (2,0)\ \text{dan}\ (1,0) \\
(D)\ & (-4,0)\ \text{dan}\ (2,0) \\
(E)\ & (-5,0)\ \text{dan}\ (1,0)
\end{align}$
Untuk memilih titik potong kurva dengan sumbu $X$, maka kita perlu ketahui persamaan kurva. Kurva pada gambar melalui klimaks $(-2,9)$ dan sebuah titik sembarang $(0,5)$.
Jika diketahui Titik Puncak $(x_{p},y_{p})$ dan sebuah titik sembarang $(x,y)$ maka FK adalah:
$\begin{align}
y & = a\left (x -x_{p}\right)^{2}+y_{p} \\
5 & = a\left (0 -(-2)\right)^{2}+9 \\
5 & = a\left (0 + 2 \right)^{2}+9 \\
5-9 & = 4a \\
\dfrac{-4}{4} & = a \\
-1 & = a
\end{align}$
Persamaan kurva
$\begin{align}
y & = a\left (x -x_{p}\right)^{2}+y_{p} \\
y & = (-1) \left (x -(-2)\right)^{2}+9 \\
y & = (-1) \left (x + 2 \right)^{2}+9 \\
y & = (-1) \left (x^{2} + 4x+4 \right)+9 \\
y & = -x^{2} - 4x-4+9 \\
y & = -x^{2} - 4x+5
\end{align}$
Memotong sumbu $X$, maka $y=0$:
$\begin{align}
0 & = -x^{2} - 4x+5 \\
0 & = x^{2} + 4x-5 \\
0 & = (x+5)(x-1) \\
& x=-5\ \text{atau}\ x=1
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(E)\ (-5,0)\ \text{dan}\ (1,0)$
4. Suatu bangunan akan diselesaikan dalam $x$ hari dengan biaya pembangunan per hari sebesar $\left(4x+\dfrac{650}{x}-40 \right)$ juta rupiah. Biaya minimum pembangunan tersebut adalah...
$\begin{align}
(A)\ & Rp1.050.000.000,00 \\
(B)\ & Rp925.000.000,00 \\
(C)\ & Rp850.000.000,00 \\
(D)\ & Rp550.000.000,00 \\
(E)\ & Rp425.000.000,00 \\
\end{align}$
Biaya pembangunan per hari sebesar $\left(4x+\dfrac{650}{x}-40 \right)$ dan waktu pengerjaan yakni $x$ hari, sehingga biaya total adalah:
$\begin{align}
P(x) & = x \left(4x+\dfrac{650}{x}-40 \right) \\
P(x) & = 4x^{2}+650-40x
\end{align}$
Biaya minimum ketika:
$\begin{align}
P'(x) & = 0 \\
8x -40 & = 0 \\
8x & = 40 \\
x & = \dfrac{40}{8} \\
x & = 5
\end{align}$
Biaya minimum ketika $x=5$
$\begin{align}
P(x) & = 4x^{2}+650-40x \\
P(5) & = 4(5)^{2}+650-40(5) \\
& = 100+650-200 \\
& = 550
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(D)\ Rp550.000.000,00$
5. Fungsi $g(x)=\dfrac{2}{3}x^{3}+\dfrac{7}{2}x^{2}+6x+1$ turun pada interval...
$\begin{align}
(A)\ & -1 \lt x \lt \dfrac{1}{2} \\
(B)\ & -1 \lt x \lt -\dfrac{1}{2} \\
(C)\ & -1 \lt x \lt \dfrac{3}{2} \\
(D)\ & -2 \lt x \lt -\dfrac{3}{2} \\
(E)\ & -2 \lt x \lt \dfrac{3}{2}
\end{align}$
Syarat suatu fungsi akan turun yakni turunan pertama kurang dari nol,
turunan pertama $g(x)$ yakni $g'(x)=2x^{2}+7x+6$
$ \begin{align}
g'(x) & \lt 0 \\
2x^{2}+7x+6 & \lt 0 \\
(2x+3)(x+2) & \lt 0 \\
\left[x=-\dfrac{3}{2} \right] & \left[x=-2 \right] \\
-2 \lt x \lt -\dfrac{3}{2} &
\end{align}$
(*Jika masih kesulitan menuntaskan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat)
$\therefore$ Pilihan yang sesuai yakni $(D)\ -2 \lt x \lt -\dfrac{3}{2}$
6. Persamaan bulat yang berpusat di $P(-2,3)$ dan melalui titik $(-1,3)$ adalah...
$\begin{align}
(A)\ & x^{2}+y^{2}+4x-6y+12=0 \\
(B)\ & x^{2}+y^{2}-4x-6y+12=0 \\
(C)\ & x^{2}+y^{2}+4x-6y-12=0 \\
(D)\ & x^{2}+y^{2}+4x+6y+12=0 \\
(E)\ & x^{2}+y^{2}+4x+6y-12=0 \\
\end{align}$
Untuk membentuk persamaan bulat setidaknya ada 2 hal dasar harus kita ketahui, yaitu titik sentra dan jari-jari lingkaran.
Pada soal disampaikan titik sentra bulat $P(-2,3)$ dan bulat melalui titik $(-1,3)$, artinya jari-jari bulat yakni jarak titik sentra ke titik yang dilalui lingkaran.
$ \begin{align}
r & = \sqrt{(y_{2}-y_{1})^{2}+x_{2}-x_{1})^{2}} \\
& =\sqrt{(3-3)^{2}+(-1-(-2))^{2}} \\
& =\sqrt{0+1} \\
& =1
\end{align} $
Persamaan bulat engan sentra $(a,b)$ dan jari-jari $r$ adalah:
$ \begin{align}
(x-a)^{2}+(y-b)^{2}& =r^{2} \\
(x-(-2))^{2}+(y-3)^{2}& =1^{2} \\
x^{2}+4x+4+y^{2}-6y+9 & =1 \\
x^{2}+y^{2}+4x-6y+12 & = 0
\end{align} $
(*Jika tertarik untuk berlatih lagi perihal Matematika Dasar: Lingkaran [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai yakni $(A)\ x^{2}+y^{2}+4x-6y+12=0$
7. Salah satu persamaan garis singgung bulat $x^{2}+y^{2}-2x+4y-15=0$ yang tegak lurus dengan garis $x+2y-6=0$ adalah...
$\begin{align}
(A)\ & x+2y+27=0 \\
(B)\ & x+2y-27=0 \\
(C)\ & 2x+y+14=0 \\
(D)\ & 2x-y-14=0 \\
(E)\ & 2x-y-6=0
\end{align}$
Persamaan garis singgung pada bulat yang dicari pada soal yakni PGS bulat jikalau diketahui gradiennya sebab garis singgung bulat tegak lurus dengan garis $x+2y-6=0$.
Garis singgung bulat tegak lurus dengan garis $x+2y-6=0$ maka gradien garis $x+2y-6=0$ ($m=-\frac{1}{2}$) dikali gradien garis singgung bulat yakni $-1$.
$m \times\ -\frac{1}{2}=-1$
$m =2$
Persamaan Garis Singgung Lingkaran $ x^{2} + y^{2} + Ax + By + C = 0$ jikalau diketahui gradiennya yakni $y - b = m(x-a) \pm r \sqrt{1 + m^{2}}$.
Dari persamaan bulat $x^{2}+y^{2}-2x+4y-15=0$ kita peroleh sentra bulat yaitu $(1,-2)$ dan $r = \sqrt{a^{2} + b^{2} - C}=\sqrt{1 + 4 +15}=\sqrt{20}$.
$\begin{align}
y - b & = m(x-a) \pm r \sqrt{1 + m^{2}} \\
y +2 & = 2(x-1) \pm \sqrt{20} \sqrt{1 + (2)^2} \\
y +2 & = 2x-2 \pm \sqrt{20} \sqrt{5} \\
y & = 2x-4 \pm \sqrt{100} \\
y & = 2x-4 \pm 10 \\
\text{(PGS 1) }:y & = 2x-4+10 \\
2x-y+6 & = 0 \\
\text{(PGS 2) }:y & = 2x-4-10 \\
2x-y-14 & = 0
\end{align} $
$\therefore$ Pilihan yang sesuai yakni $(D)\ 2x-y-14=0$
8. Persamaan garis singgung kurva $y=x^{2}+x+3$ yang tegak lurus dengan garis $x-y=5$ adalah...
$\begin{align}
(A)\ & x-y-4=0 \\
(B)\ & x-y+4=0 \\
(C)\ & x+y-2=0 \\
(D)\ & x+y+2=0 \\
(E)\ & -x+y-2=0 \\
\end{align}$
Garis singgung kurva tegak lurus dengan garis $x-y=5$ maka gradien garis $x-y=5$ ($m=1$) dikali gradien garis singgung kurva yakni $-1$.
$m \times\ 1=-1$
$m =-1$
Untuk mendapat persamaan garis singgung kurva kita perlu sebuah titik singgung pada kurva dan gradien garis.
Gradien persamaan garis singgung pada kurva $y=x^{2}+x+3$ gradiennya yakni $m=-1$, sehingga:
$\begin{align}
y & = x^{2}+x+3 \\
m=y' & = 2x+1 \\
-1 & = 2x+1 \\
-2 & = 2x \\
x & = -1 \\
y & = x^{2}+x+3 \\
y & = (-1)^{2}+(-1)+3 \\
y & = 3
\end{align} $
Persamaan garis singgung kurva melalui titik $(-1,3)$ dengan gradien $m=-1$
$\begin{align}
y-y_{1} & = m (x-x_{1}) \\
y-3 & = -1 (x-(-1)) \\
y-3 & = -x-1 \\
y & = -x+2
\end{align} $
(*Jika tertarik untuk berlatih lagi perihal Matematika Dasar: Persamaan Garis [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai yakni $(C)\ x+y-2=0$
9. Diketahui fungsi $f(x)=\dfrac{x^{2}-1}{2x}$ untuk $x \neq 0$. Turunan pertama fungsi $f(x)$ yakni $f'(x)=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{2}-\dfrac{1}{2x^{2}} \\
(B)\ & \dfrac{1}{2}+\dfrac{1}{2x^{2}} \\
(C)\ & \dfrac{1}{2}-\dfrac{3}{4x^{2}} \\
(D)\ & -\dfrac{3}{2}+\dfrac{3}{4x^{2}} \\
(E)\ & \dfrac{3}{2}+\dfrac{3}{4x^{2}}
\end{align}$
Turunan pertama dari $f(x)$ yakni $f'(x)$ yaitu:
$ \begin{align}
f(x) & = \dfrac{u(x)}{v(x)} \\
f'(x) & = \dfrac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^{2}(x)} \\
& = \dfrac{(2x) \cdot (2x) - \left( x^{2}-1 \right) \cdot 2}{(2x)^{2}} \\
& = \dfrac{4x^{2} - 2x^{2}+2}{4x^{2}} \\
& = \dfrac{2x^{2} +2}{4x^{2}} \\
& = \dfrac{2x^{2}}{4x^{2}} + \dfrac{2}{4x^{2}} \\
& = \dfrac{1}{2} + \dfrac{1}{2x^{2}} \\
\end{align} $
(*Jika tertarik untuk berlatih lagi perihal Matematika Dasar: Turunan [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai yakni $(B)\ \dfrac{1}{2}+\dfrac{1}{2x^{2}}$
10. Diketahui $f(x)=3x+4$ dan $(gof)(x)=6x+6$. Nilai dari $g^{-1}(0)=\cdots$
$\begin{align}
(A)\ & 2 \\
(B)\ & 1 \\
(C)\ & \dfrac{1}{2} \\
(D)\ & -1 \\
(E)\ & -2
\end{align}$
Berdasarkan informmasi pada soal, diketahui $(gof)(x)=6x+6$ maka
$ \begin{align}
g \left (f(x) \right ) & = 6x+6 \\
g \left (3x+4 \right ) & = 2(3x+4)-2 \\
g \left (a \right ) & = 2(a)-2
\end{align} $
Invers fungsi $g(a)$ yakni $g^{-1}(a)$, salah satu cara memilih $g^{-1}(a)$ yaitu:
$ \begin{align}
y & = 2(a)-2 \\
y+2 & = 2(a) \\
\dfrac{y+2}{2} & = a \\
g^{-1}(a) & = \dfrac{a+2}{2} \\
g^{-1}(0) & = \dfrac{0+2}{2}=1
\end{align} $
(*Jika tertarik untuk berlatih lagi perihal Matematika Dasar: FKFI [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai yakni $(B)\ 1$
11. Usia Citra $8$ tahun lebih bau tanah dari usia Salsa. Sedangkan $4$ tahun yang kemudian usia Salsa sama dengan dua pertiga dari usia Citra. Usia Salsa sekarang...
$\begin{align}
(A)\ & 28\ \text{tahun} \\
(B)\ & 25\ \text{tahun} \\
(C)\ & 20\ \text{tahun} \\
(D)\ & 17\ \text{tahun} \\
(E)\ & 14\ \text{tahun}
\end{align}$
Kita misalkan umur Citra dan Salsa ketika ini yakni $\text{Citra}=C$ dan $\text{Salsa}=S$.
Untuk empat tahun yang kemudian umur mereka yakni $(C-4)$ dan $(S-4)$, berlaku:
$ \begin{align}
\dfrac{2}{3} (C-4) & = (S-4) \\
2C-8 & = 3S-12 \\
2C-3S & = -4 \text{(Pers.1)}
\end{align} $
Untuk ketika ini umur mereka yakni $(C)$ dan $(S)$, berlaku:
$ \begin{align}
C & = S + 8 \\
C-S & = 8\ \text{(Pers.2)}
\end{align} $
Dari (Pers.1) dan (Pers.2) kita peroleh;
$\begin{array}{c|c|cc}
2C - 3S = -4 & \times 1 & 2C - 3S = -4 & \\
C- S = 8 & \times 2 & 2C-2S = 16 & - \\
\hline
& & -S = - 20 \\
& & S =20
\end{array} $
$\therefore$ Pilihan yang sesuai yakni $(C)\ 20\ \text{tahun}$
12. Harga $4$ buku dan $4$ penggaris yakni $Rp40.000,00$, sedangkan harga $4$ buku dikurangi harga $4$ penggaris yakni $Rp20.000,00$. Jika harga buku yakni $a$ rupiah dan harga penggaris $b$ rupiah, persamaan matriks yang sesuai untuk menuntaskan persoalan tersebut adalah...
$\begin{align}
(A)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{32}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{32}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{16}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=-\dfrac{1}{6}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
a \\
b
\end{pmatrix}=-\dfrac{1}{32}\begin{pmatrix}
4 & -4\\
-4 & 4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix}
\end{align}$
Dengan menggunakan pemisalan $\text{harga buku}=a$ dan $\text{harga penggaris}=b$,
Harga $4$ buku dan $4$ penggaris yakni $Rp40.000,00$
$4a+4b=40.000$
Harga $4$ buku dikurangi $4$ penggaris yakni $Rp20.000,00$
$4a-4b=40.000$
$\begin{array}{c|c|cc}
4a+4b = 40.000 & \\
4a-4b = 20.000 & \\
\hline
\end{array} $
Sistem persamaan diatas jikalau tuliskan dalam bentuk matriks menjadi:
$\begin{align}
\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
a \\
b
\end{pmatrix} &= \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}^{-1}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \dfrac{1}{-16-16}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= -\dfrac{1}{32}\begin{pmatrix}
-4 & -4\\
-4 & 4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix} \\
\begin{pmatrix}
a \\
b
\end{pmatrix} &= \dfrac{1}{32}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix} \begin{pmatrix}
40.000\\
20.000
\end{pmatrix}
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(B)\ \begin{pmatrix}
a \\
b
\end{pmatrix}=\dfrac{1}{32}\begin{pmatrix}
4 & 4\\
4 & -4
\end{pmatrix}\begin{pmatrix}
40.000\\
20.000
\end{pmatrix}$
13. Diketahui matriks $A=\begin{pmatrix}
2 & 1\\
1 & 2
\end{pmatrix}$ dan $B=\begin{pmatrix}
3 & -1\\
2 & 1
\end{pmatrix}$. Invers dari matriks $BA$ yakni $(BA)^{-1}=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
\dfrac{4}{15} & \dfrac{1}{15} \\
\dfrac{1}{3} & \dfrac{-1}{3}
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
\dfrac{4}{15} & -\dfrac{1}{15} \\
-\dfrac{1}{3} & \dfrac{1}{3}
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
\dfrac{-4}{15} & \dfrac{1}{15} \\
\dfrac{1}{3} & \dfrac{-1}{3}
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
\dfrac{-4}{15} & \dfrac{-1}{15} \\
\dfrac{-1}{3} & \dfrac{1}{3}
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
\dfrac{-4}{15} & \dfrac{-1}{15} \\
\dfrac{1}{3} & \dfrac{-1}{3}
\end{pmatrix}
\end{align}$
$\begin{align}
BA &= \begin{pmatrix}
3 & -1\\
2 & 1
\end{pmatrix} \begin{pmatrix}
2 & 1\\
1 & 2
\end{pmatrix} \\
&= \begin{pmatrix}
6-1 & 3-2\\
4+1 & 2+2
\end{pmatrix} \\
&= \begin{pmatrix}
5 & 1\\
5 & 4
\end{pmatrix}
\end{align} $
$\begin{align}
BA &= \begin{pmatrix}
5 & 1\\
5 & 4
\end{pmatrix} \\
BA^{-1} &= \dfrac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix} \\
&= \dfrac{1}{20-5}\begin{pmatrix}
4 & -1\\
-5 & 5
\end{pmatrix} \\
&= \begin{pmatrix}
\dfrac{4}{15} & \dfrac{-1}{15} \\
\dfrac{-5}{15} & \dfrac{5}{15}
\end{pmatrix}
\end{align} $
(*Jika tertarik untuk berlatih lagi perihal Matematika Dasar: Matriks [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai yakni $(B)\ \begin{pmatrix}
\dfrac{4}{15} & -\dfrac{1}{15} \\
-\dfrac{1}{3} & \dfrac{1}{3}
\end{pmatrix}$
14. Sebuah pabrik memproduksi ban sepeda melalui dua tahap. Tahap pertama menggunakan mesin $A$ untuk mengolah karet mentah menjadi keret siap cetak. Tahap kedua menggunakan mesin $B$ untuk mengolah karet siap cetak menjadi ban. Misalkan $x$ menyatakan jumlah karet mentah dalam satuan $kg$ dan $y$ menyatakan jumlah materi siap cetak dalam satuan $m^{2}$. Pada tahap pertama, banyak materi siap cetak dihasilkan mengikuti fungsi $y=f(x)=5x-7$. Pada tahap kedua, jumlah ban yang dihasilkan mengikuti fungsi $g(y)=7y+3$. Jika satu buah ban sepeda seharga $Rp50.000$ dan terdapat $100\ kg$ karet mentah, pendapatan pabrik tersebut adalah...
$\begin{align}
(A)\ & Rp169.500.000,00 \\
(B)\ & Rp170.550.000,00 \\
(C)\ & Rp170.700.000,00 \\
(D)\ & Rp172.550.000,00 \\
(E)\ & Rp172.700.000,00
\end{align}$
Banyak materi mengikuti fungsi $y=f(x)=5x-7$, untuk $x=100$ maka $y=5(100)-7=493$
Jumlah ban yang dihasilkan mengikuti $g(y)=7y+3$, untuk $y=493$ maka $g(y)=7(493)+3=3.454$
Jumlah materi yang dihasilkan yakni $3.454$ buah dengan harga satu buah $Rp50.000$ maka pendapatan pabrik yakni $3.454 \times 50.000=172.700.000$
$\therefore$ Pilihan yang sesuai yakni $(E)\ Rp172.700.000,00$
15. Diketahui segitiga siku-siku $KLM$ dengan $sin\ L=\dfrac{7}{25}$ ($M$ dan $L$ sudut lancip). Nilai dari $(cosec\ L+tan\ M)(1-sin\ M)$ adalah...
$\begin{align}
(A)\ & \dfrac{24}{25} \\
(B)\ & \dfrac{18}{25} \\
(C)\ & \dfrac{7}{25} \\
(D)\ & \dfrac{6}{25} \\
(E)\ & \dfrac{4}{25} \\
\end{align}$
Sebagai gambaran segitiga siku-siku $KLM$ sanggup digambarkan sebagai berikut:
Dengan menggunkan teorema phytagoras sanggup kita hitung, $KL$ yaitu:
$\begin{align}
KL^{2} & = LM^{2}- KM^{2} \\
& = 25^{2}- 7^{2} \\
& = 625 - 49 \\
& = 576 \\
KL & = \sqrt{576}=24
\end{align}$
$\begin{align}
& \left( cosec\ L+tan\ M \right) \left( 1-sin\ M \right) \\
& = \left( \dfrac{1}{sin\ L}+tan\ M \right) \left( 1-sin\ M \right) \\
& = \left( \dfrac{25}{7}+ \dfrac{24}{7} \right) \left( 1- \dfrac{24}{25} \right) \\
& = \left( \dfrac{49}{7} \right) \left( \dfrac{1}{25} \right) \\
& = \left( 7 \right) \left( \dfrac{1}{25} \right) \\
& = \dfrac{7}{25}
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(C)\ \dfrac{7}{25}$
16. Seorang anak diminta untuk mengukur tinggi tiang listrik yang ada di depan sekolahnya dengan menggunakan klinometer. Pada posisi berdiri pertama dengan melihat ujung atas tiang listrik, terlihat klinometer menunjukkan sudut $30^{\circ}$. Kemudian beliau bergerak mendekati tiang listrik sejauh $18$ meter dan terlihat klinometer menunjuk sudut $45^{\circ}$. Tinggi tiang listrik tersebut adalah...
$\begin{align}
(A)\ & 18\sqrt{3}\ m \\
(B)\ & (18\sqrt{3}-18)\ m \\
(C)\ & (12\sqrt{3}+12)\ m \\
(D)\ & (9\sqrt{3}+9)\ m \\
(E)\ & (9\sqrt{2}+9)\ m
\end{align}$
Untuk mempermudah istilah pada gambar, titik-titik sudut kita beri nama sebagai berikut;
$\begin{align}
tan\ 45 & = \dfrac{CD}{BC} \\
1 & = \dfrac{CD}{BC} \\
BC & = CD \\
tan\ 30 & = \dfrac{CD}{AC} \\
\dfrac{1}{3}\sqrt{3} & = \dfrac{CD}{AC} \\
\dfrac{1}{3}AC \sqrt{3} & = CD
\end{align}$
$\begin{align}
BC & = \dfrac{1}{3}AC \sqrt{3} \\
BC & = \dfrac{1}{3} (BC+18) \sqrt{3} \\
BC & = \dfrac{1}{3}BC\sqrt{3}+6\sqrt{3} \\
BC - \dfrac{1}{3}BC\sqrt{3} & = 6\sqrt{3} \\
3BC - BC\sqrt{3} & = 18\sqrt{3} \\
BC \left(3 - \sqrt{3} \right) & = 18\sqrt{3} \\
BC & = \dfrac{18\sqrt{3}}{3 - \sqrt{3}} \times \dfrac{3 + \sqrt{3}}{3 + \sqrt{3}} \\
& = \dfrac{54\sqrt{3}+54}{9 -3} \\
& = \dfrac{54\sqrt{3}+54}{6} \\
& = 9\sqrt{3}+9 \\
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(D)\ (9\sqrt{3}+9)\ m $
17. Diketahui kubus $PQRS.TUVW$ dengan panjang rusuk $4\ cm$. Sudut anatar $UW$ dan $QV$ adalah...
$\begin{align}
(A)\ & 150^{\circ} \\
(B)\ & 135^{\circ} \\
(C)\ & 120^{\circ} \\
(D)\ & 90^{\circ} \\
(E)\ & 60^{\circ} \\
\end{align}$
Untuk mempermudah melihat sudut kedua garis pada kubus, kita perhatikan gambar berikut ini;
Kita pilih garis $QV$ hingga ke $PW$, sehingga sudut $PW$ dan $WU$ yakni sudut yang akan kita cari. Dengan menggunakan tunjangan segitiga $PWU$, dimana segitiga $PWU$ yakni segitiga sama sisi $(PW=WU=UP=4\sqrt{2})$ sehingga besar sudut $PW$ dan $WU$ yakni $60^{\circ}$
$\therefore$ Pilihan yang sesuai yakni $(E)\ 60^{\circ}$
18. Balok $ABCD.EFGH$ menyerupai tampak pada gambar mempunyai ukuran $AB=10\ cm$, $BC=4\ cm$, $CG=8\ cm$, $AS=2\ cm$ dan $GM=3\ cm$. Seekor semut berjalan pada permukaan balok dari $S$ menuju masakan yang ada di $M$. Jarak terpendek dari asal semut $(S)$ ke masakan $(M)$ adalah...
$\begin{align}
(A)\ & 12\ cm \\
(B)\ & (4+\sqrt{41})\ cm \\
(C)\ & (4+\sqrt{89})\ cm \\
(D)\ & (8\sqrt{2}+5)\ cm \\
(E)\ & \sqrt{105}\ cm
\end{align}$
Lintasan semut yakni pada permukaan balok, sehingga mustahil eksklusif berjalan dari $S$ ke $M$.
Jarak terpendek sanggup pada balok sanggup kita hitung dengan menggunakan teorema phytagoras, pada balok kita munculkan persegi panjang $MNOP$. Kita perhatikan pada gambar berikut:
Pada segitiga $SOP$ berlaku
$\begin{align}
SP^{2} & = OP^{2}+OS^{2} \\
& = 5^{2}+8^{2} \\
& = 25 +64 \\
& = 89 \\
SP & = \sqrt{89}
\end{align}$
Jarak terpendek dari $S$ ke $M$ yakni $SP+PM=\sqrt{89}+4$
$\therefore$ Pilihan yang sesuai yakni $(C)\ (4+\sqrt{89})\ cm$
19. Segitiga $PQR$ dengan titik sudut $P(1,1)$, $Q(3,1)$, dan $R(2,2)$ dirotasi sebesar $180^{\circ}$ pada sentra rotasi $(3,4)$. Bayangan ketiga titik tersebut berturut-turut adalah...
$\begin{align}
(A)\ & P'(5,7),\ Q'(3,7),\ R'(4,6) \\
(B)\ & P'(5,5),\ Q'(3,4),\ R'(4,6) \\
(C)\ & P'(4,7),\ Q'(3,7),\ R'(4,4) \\
(D)\ & P'(4,5),\ Q'(3,4),\ R'(4,4) \\
(E)\ & P'(4,7),\ Q'(3,7),\ R'(4,4)
\end{align}$
Bayangan titik $(x,y)$yang di rotasi dirotasi sejauh $\theta$ dengan sentra $(a,b)$ kita tentukan dengan matriks;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ \theta & -sin\ \theta\\
sin\ \theta & cos\ \theta
\end{pmatrix}\begin{pmatrix}
x-a\\
y-b
\end{pmatrix}+\begin{pmatrix}
a\\
b
\end{pmatrix}$
Bayangan titik $(x,y)$ yang di rotasi dirotasi sejauh $180^{\circ}$ dengan sentra $(3,4)$ adalah;
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
cos\ 180 & -sin\ 180\\
sin\ 180 & cos\ 180
\end{pmatrix}\begin{pmatrix}
x-3\\
y-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x-3\\
y-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
Bayangan titik $P(1,1)$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
1-3\\
1-4
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
-2\\
-3
\end{pmatrix}+\begin{pmatrix}
3\\
4
\end{pmatrix}$
$\begin{pmatrix}
x'\\
y'
\end{pmatrix} =\begin{pmatrix}
2+3\\
3+4
\end{pmatrix}=\begin{pmatrix}
5\\
7
\end{pmatrix}$
Dengan cara yang sama bayangan titik $Q(3,1)$ yakni $Q'(3,7)$ dan bayangan titik $R(2,2)$ yakni $R'(4,6)$
$\therefore$ Pilihan yang sesuai yakni $(A)\ P'(5,7),\ Q'(3,7),\ R'(4,6)$
20. Nilai dari $ \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- 3x-1 \right )$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{6} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 1 \\
(D)\ & \dfrac{13}{6} \\
(E)\ & 3
\end{align}$
$ \begin{align}
& \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- 3x-1\right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}- \left (3x+1 \right ) \right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}-\sqrt{ \left (3x+1 \right )^{2}} \right ) \\
& = \underset{x \to \infty}{lim} \left ( \sqrt{9x^2+7x-2}-\sqrt{9x^2+6x+1} \right ) \\
& = \frac{b-q}{2\sqrt{a}} \\
& = \frac{7-6}{2\sqrt{9}} \\
& = \frac{1}{6}
\end{align} $
(*Jika tertarik untuk berlatih lagi perihal Matematika Dasar: Limit Takhingga [Soal SBMPTN dan Pembahasan])
$\therefore$ Pilihan yang sesuai yakni $(A)\ \dfrac{1}{6}$
21. Perhatikan gambar berikut!
Luas tempat persegi yang diarsir adalah...
$\begin{align}
(A)\ & 32\ cm^{2} \\
(B)\ & 16\ cm^{2} \\
(C)\ & 12\ cm^{2} \\
(D)\ & 8 cm^{2} \\
(E)\ & 4\ cm^{2}
\end{align}$
Jika kita perhatikan luas persegi pertama (terluar) yakni $8 \times 8 =64\ cm^{2}$
Persegi yang kedua $4\sqrt{2} \times 4\sqrt{2} =32\ cm^{2}$
Persegi yang ketiga $4 \times 4 =16\ cm^{2}$
Persegi yang keempat $2\sqrt{2} \times 2\sqrt{2} =8\ cm^{2}$
Persegi yang kelima $2 \times 2 =4\ cm^{2}$
atau bisa pakai deret geometri suku ke-5 dengan $a=64$ dan $r=\dfrac{32}{64}=\dfrac{1}{2}$ adalah:
$U_{n}=ar^{n-1}$
$U_{5}=(64)(\dfrac{1}{2})^{5-1}$
$U_{5}=(64)(\dfrac{1}{2})^{4}$
$U_{5}=(64)\left(\dfrac{1}{16} \right)$
$U_{5}=4$
$\therefore$ Pilihan yang sesuai yakni $(E)\ 4\ cm^{2}$
22. Suku ke-8 suatu deret aritmatika yakni $15$ dan jumlah suku ke-2 dengan suku ke-16 yakni $26$. Jumlah $40$ suku pertama deret adalah...
$\begin{align}
(A)\ & 800 \\
(B)\ & 400 \\
(C)\ & -200 \\
(D)\ & -400 \\
(E)\ & -800
\end{align}$
Catatan deret aritmatika untuk menuntaskan soal diatas yakni suku ke-$n$ yaitu $U_{n}=a=(n-1)b$ dan jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)$ atau $S_{n}=\dfrac{n}{2} \left(a+U_{n} \right)$
Suku ke-8 deret aritmatika yakni 15, berlaku:
$\begin{align}
U_{8} & = 15 \\
a+7b & = 15
\end{align}$
Jumlah suku ke-2 dengan suku ke-16 yakni $26$, berlaku:
$\begin{align}
U_{2} + U_{16} & = 26 \\
a+b + a+15b & = 26 \\
2a+16b & = 26 \\
a+8b & = 13
\end{align}$
$\begin{array}{c|c|cc}
a+8b = 13 & \\
a+7b=15 & - \\
\hline
b = - 2 & \\
a = 15 + 14 = 19 & \\
\end{array} $
Jumlah $40$ suku pertama deret adalah:
$\begin{align}
S_{n} & = \dfrac{n}{2} \left(2a+(n-1)b \right) \\
S_{40} & = \dfrac{40}{2} \left(2(19)+(40-1)(-2) \right) \\
& = 20 \left(38-78 \right) \\
& = -800
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(E)\ -800$
23. Hasil dari $\int 4x\ \left ( 2x^{2}-1 \right )^{3}\ dx $ adalah...
$\begin{align}
(A)\ & \dfrac{1}{4} \left ( 2x^{2}-1 \right )^{4} + C \\
(B)\ & 4 \left ( 2x^{2}-1 \right )^{4} + C \\
(C)\ & \dfrac{1}{2} \left ( 2x^{2}-1 \right )^{4} + C \\
(D)\ & \dfrac{1}{8} \left ( 2x^{2}-1 \right )^{4} + C \\
(E)\ & \dfrac{1}{8} \left ( 2x^{2}+1 \right )^{4} + C
\end{align}$
Hasil $\int 4x\ \left ( 2x^{2}-1 \right )^{4}\ dx $ kita coba kerjakan dengan pemisalan;
Misal:
$\begin{align}
u & = 2x^{2}-1 \\
\dfrac{du}{dx} & = 4x \\
du & = 4x\ dx
\end{align}$
Soal diatas, kini bisa kita rubah menjadi;
Misal:
$\begin{align}
& \int 4x\ \left ( 2x^{2}-1 \right )^{3}\ dx \\
& = \int \left ( u \right )^{3}\ 4x\ dx \\
& = \int \left ( u \right )^{3}\ du \\
& = \dfrac{1}{4} \left ( u \right )^{3+1} + C \\
& = \dfrac{1}{4} \left ( 2x^{2}-1 \right )^{4} +C
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ \dfrac{1}{4} \left ( 2x^{2}-1 \right )^{4} + C$
24. Diketahui $\int_{-2}^{3} \left ( 3x^{2}-12x+m \right ) dx=30$. Nilai $m$ yang memenuhi adalah...
$\begin{align}
(A)\ & 3 \\
(B)\ & 5 \\
(C)\ & 6 \\
(D)\ & 8 \\
(E)\ & 9
\end{align}$
$ \begin{align}
\int_{-2}^{3} \left ( 3x^{2}-12x+m \right ) dx & = 30 \\
\left [x^{3}-6x^{2}+mx \right ]_{-2}^{3} & = 30 \\
\left [(3)^{3}-6(3)^{2}+m(3) \right ]-\left [(-2)^{3}-6(-2)^{2}+m(-2) \right ] & = 30 \\
\left [27-54+3m \right ]-\left [-8-24-2m \right ] & = 30 \\
35-30+5m & = 30 \\
5 +5m & = 30 \\
m & = \frac{25}{5}=5
\end{align} $
$\therefore$ Pilihan yang sesuai yakni $(B)\ 5$
25. Perhatikan tempat penyelesaian berikut!
Sistem pertidaksamaan linear yang memenuhi tempat penyelesaian yang diarsir adalah...
$\begin{align}
(A)\ & 2x+y \leq 4;\ x+3y \leq 6;\ x \geq 0;\ y \geq 0 \\
(B)\ & 2x+y \leq 4;\ x+3y \geq 6;\ x \geq 0;\ y \geq 0 \\
(C)\ & 2x+y \geq 4;\ x+3y \leq 6;\ x \geq 0;\ y \geq 0 \\
(D)\ & 2x+y \leq 4;\ 3x+y \leq 6;\ x \geq 0;\ y \geq 0 \\
(E)\ & 2x+y \geq 4;\ 3x+y \leq 6;\ x \geq 0;\ y \geq 0 \\
\end{align}$
Untuk memilih sistem pertidaksamaan dari tempat yang diarsir pada gambar, pertama kita harus mendapat sistem persamaannya atau batas-batas tempat yang diarsir.
Pada gambar diatas ada 4 garis yang membatasi tempat yang diarsir, coba kita berikan ilustrasinya;
- $I:\ 4x+2y=8\ \rightarrow\ 2x+y=4$
- $II:\ 2x+6y=12\ \rightarrow\ x+3y=6$
- $III:\ y=0$
- $IV:\ x=0$
Untuk memilih pertidaksamaannya, kita tentukan dengan titik uji. Kita pilih sebuah titik pada tempat yang merupakan himpunan penyelesaian atau tempat yang diarsir pada gambar.
- Titik $(0,0)$ ke $2x+y=4$ diperoleh $ 0 \leq 4 $, maka pertidaksamaannya yakni $ 2x+y \leq 4 $.
- Titik $(0,0)$ ke $x+3y=6$ diperoleh $ 0 \leq 6 $, maka pertidaksamaannya yakni $ x+3y\leq 6 $.
- Untuk batas $III$ dan $IV$ tempat yang diarsir yakni tempat $x \geq 0;\ y \geq 0$
Trik untuk melihat atau memilih tempat Himpunan Penyelesaian sanggup dengan melihat koefisien $y$.
- Jika koefisien $y$ positif dan tanda $\leq$ maka tempat HP berada di bawah garis.
- Jika koefisien $y$ positif dan tanda $\geq$ maka tempat HP berada di atas garis.
$\therefore$ Pilihan yang sesuai yakni $(A)\ 2x+y \leq 4;\ x+3y \leq 6;\ x \geq 0;\ y \geq 0$
26. Seoarang petani ikan ingin menciptakan 12 bak ikan untuk ikan lele dan ikan gurami. Kolam ikan lele memerlukan lahan $20\ m^{2}$ dan bak ikan gurmai memerlukan lahan $40\ m^{2}$, sedangkan lahan yang tersedia hanya $400\ m^{2}$. Setiap bak ikan gurami menghasilakn laba $Rp10.000.000,00$ dan setiap bak ikan lele menghasilakn laba $Rp6.000.000,00$. Keuntungan maksimum yang bisa diperoleh petani tersebut adalah...
$\begin{align}
(A)\ & Rp72.000.000,00 \\
(B)\ & Rp75.000.000,00 \\
(C)\ & Rp88.000.000,00 \\
(D)\ & Rp104.000.000,00 \\
(E)\ & Rp115.000.000,00
\end{align}$
Informasi yang ada pada soal coba kita rangkum dalam bentuk tabel, dengan memisalkan banyak bak $\text{lele}\ =x$ dan $\text{gurami}\ =y$ maka kurang lebih menjadi menyerupai berikut ini;
Jenis Kolam | lahan | banyak |
Lele ($x$) | $20$ | $x$ |
Gurami ($y$) | $40$ | $y$ |
Tersedia | $400$ | $12$ |
Dari tabel diatas, sanggup kita bentuk sistem pertidaksamaannya;
$\begin{align}
20x+40y & \leq 400 \\
\left( x+2y \leq 20 \right) & \\
x+y & \leq 12 \\
x & \geq 0 \\
y & \geq 0
\end{align} $
Trik untuk melihat atau memilih tempat Himpunan Penyelesaian sanggup dengan melihat koefisien $y$.Jika kita gambarkan gambaran tempat Himpunan Penyelesaian sistem pertidaksamaan diatas adalah;
- Jika koefisien $y$ positif dan tanda $\leq$ maka tempat HP berada di bawah garis.
- Jika koefisien $y$ positif dan tanda $\geq$ maka tempat HP berada di atas garis.
Untuk mendapat penjualan maksimum, salah satu caranya sanggup dengan titik uji pada titik sudut tempat HP kepada fungsi tujuan $Z=6x+10y$ (dalam jutaan).
- titik $(0,0)$ maka $Z=6 (0)+10 (0)=0$
- titik $(12,0)$ maka $Z=6 (12)+10 (0)=72 $
- titik $(4,8)$ maka $Z=6 (4)+10 (8)=104 $ titik $(4,8)$ kita peroleh dengan mengeliminasi atau substitusi garis I dan garis II
- titik $(0,10)$ maka $Z=6 (0)+10 (10)=100 $
27. Raras akan menciptakan isyarat dengan menyusun dari $5$ abjad dan diikuti oleh $2$ angka berbeda. Jika abjad yang disusun berasal dari abjad penyusun namanya, banyak isyarat yang sanggup dibentuk adalah...
$\begin{align}
(A)\ & 1.800 \\
(B)\ & 2.160 \\
(C)\ & 2.700 \\
(D)\ & 4.320 \\
(E)\ & 5.400
\end{align}$
Huruf penyusun nama raras yakni $5$ abjad dimana dua abjad yakni sama, sehingga untuk menyusunnya kita pakai permutasi dengan ada unsur yang sama. Lalu diikuti oleh $2$ angka yang berasal dari $10$ angka yang ada.
Banyak susunan ode yang mungkin adalah:
$\begin{align}
& P_{2! 2!}^{5!} \times 10 \times 9 \\
& = \dfrac{5 \times 4 \times 3 \times 2 \times 1 }{ 2 \times 2} \times 90 \\
& = 30 \times 90 \\
& = 2.700
\end{align} $
$\therefore$ Pilihan yang sesuai yakni $(C)\ 2.700$
28. Sebuah kotak berisi $5$ bola berwwarna merah dan $3$ bola berwarna putih. Dari dalam kotak diambil $2$ bola secara acak. Banyak cara pengambilan biar yang terambil satu bola merah dan satu bola putih adalah...
$\begin{align}
(A)\ & 8 \\
(B)\ & 15 \\
(C)\ & 25 \\
(D)\ & 27 \\
(E)\ & 30
\end{align}$
Untuk mengambil $2$ bola dimana satu bola merah dan satu bola putih, berarti akan dipilih satu bola merah dari $5$ bola dan satu bola putih dari $3$ bola:
Banyak cara pengambilan adalah:
$\begin{align}
& _{5}C_{1} \times _{3}C_{1} \\
& = 5 \times 3 \\
& = 15
\end{align} $
$\therefore$ Pilihan yang sesuai yakni $(B)\ 15$
29. Dari angka-angka $0,1,3,4,7,\ \text{dan}\ 9$ akan disusun bilangan yang terdiri atas tiga angka berlainan dan kurang dari $500$. Banyak bilangan yang sanggup dibentuk adalah...
$\begin{align}
(A)\ & 120 \\
(B)\ & 80 \\
(C)\ & 60 \\
(D)\ & 40 \\
(E)\ & 15
\end{align}$
Bilangan yang akan disusun dari $0,1,3,4,7,\ \text{dan}\ 9$ yakni kurang dari $500$, maka angka ratusan yang mungkin (1,3,4), puluhan (0,1,3,4,7,9) dan satuan (0,1,3,4,7,9).
Banyak bilangan yakni $3 \times 5 \times 4 =60$
$\therefore$ Pilihan yang sesuai yakni $(C)\ 60$
30. Kotak I berisi $3$ bola merah dan $3$ bola putih, sedangkan kotak II berisi $5$ bola merah dan $3$ bola putih. Dari kedua kotak tersebut secara acak masing-masing diambil sebuah bola. Peluang terambil bola merah dari kotak I dan bola putih dari kotak II adalah...
$\begin{align}
(A)\ & \dfrac{5}{40} \\
(B)\ & \dfrac{3}{16} \\
(C)\ & \dfrac{3}{20} \\
(D)\ & \dfrac{1}{5} \\
(E)\ & \dfrac{1}{4}
\end{align}$
Peluang sebuah tragedi $E$ yakni $P(E)=\dfrac{n(E)}{n(S)}$
Pada kotak I, merah=3 dan putih=3
Peluang terambil bola merah dari kotak I
$\begin{align}
P(M_{I}) & = \dfrac{n(E_{I})}{n(S_{I})} \\
& = \dfrac{3}{6} = \dfrac{1}{2}
\end{align}$
Pada kotak II, merah=5 dan putih=3
Peluang terambil bola putih dari kotak II
$\begin{align}
P(P_{II}) & = \dfrac{n(E_{II})}{n(S_{II})} \\
& = \dfrac{3}{8}
\end{align}$
Peluang terambil bola merah dari kotak I dan bola putih dari kotak II
$\begin{align}
P(E) & =P(M_{I}) \times P(P_{II}) \\
& =\dfrac{n(E_{I})}{n(S_{I})} \times \dfrac{n(E_{II})}{n(E_{II})} \\
& =\dfrac{3)}{6} \times \dfrac{3}{8} \\
& =\dfrac{3)}{16}
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(B)\ \dfrac{3}{16}$
31. Diberikan Histogram sebagai berikut:
Gambar ogive dari histogram tersebut adalah...
Dari histogram yang disajikan pada gambar, sanggup kita buat ogive positif dan ogive negatif. Untuk menciptakan ogive kita membutuhkan distribusi frekuensi relatif. Kita sajikan dalam bentuk tabel sebagai berikut:
Tabel distribusi Frekuensi | |||
---|---|---|---|
Kelas | Frekuensi | $f_{k} \leq$ | $f_{k} \geq$ |
$10-19$ | $15$ | $\leq 9,5: 0$ | $\geq 9,5: 120$ |
$20-29$ | $20$ | $\leq 19,5: 15$ | $\geq 19,5: 105$ |
$30-39$ | $30$ | $\leq 29,5: 35$ | $\geq 29,5: 85$ |
$40-49$ | $25$ | $\leq 39,5: 65$ | $\geq 39,5: 55$ |
$50-59$ | $15$ | $\leq 49,5: 90$ | $\geq 49,5: 30$ |
$60-69$ | $10$ | $\leq 59,5: 105$ | $\geq 59,5: 15$ |
$70-79$ | $5$ | $\leq 69,5: 115$ | $\geq 69,5: 5$ |
$80-89$ | $0$ | $\leq 79,5: 120$ | $\geq 79,5: 0$ |
Jumlah | $120$ | $-$ | $-$ |
$\therefore$ Pilihan yang sesuai yakni $(D)$
32. Perhatikan grafik histogram berikut!
Modus dari data Histogram tersebut adalah...
$\begin{align}
(A)\ & 23,00 \\
(B)\ & 23,50 \\
(C)\ & 24,33 \\
(D)\ & 24,53 \\
(E)\ & 24,83
\end{align}$
Modus yakni nilai yang paling sering muncul atau frekuensi yang paling besar.
Untuk data tunggal modus suatu data gampang ditemukan, tetapi untuk data berkelompok modus data sedikit lebih indah.
Modus data berkelompok dirumuskan menyerupai berikut ini;
$Mo = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c$
dimana;
- $Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus yakni kelas dengan frekuensi paling besar.
- Dari histogram terlihat bahwa kelas yang mempunyai frekuensi tertinggi yakni kelas $21-26$ dengan frekuensi $12$, maka kelas modusnya yakni kelas ke-3 dengan interval $21-26$; $(Tb_{mo} = 21,5)$;
- $d_1:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus; $(d_{1}=12-8=4)$;
- $d_2:$ Selisih frekuensi kelas modus dengan kelas setelah kelas modus; $(d_{2}=12-10=2)$;
- $c:$ Panjang Kelas $(c=26,5-21,5=5)$;
$ \begin{align}
Mo & = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c \\
& = 21,5 + \left( \frac{4}{4 + 2} \right) \cdot 5 \\
& = 21,5 + \left( \frac{4}{6} \right) \cdot 5 \\
& = 21,5 + \frac{20}{6} \\
& = 21,5 + 3,33 \\
& = 24,83
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 24,83$
33. Tabel berikut menunjukkan data berat tubuh anak (dalam kg) di suatu puskesmas.
Kuartil atas data berat tubuh anak tersebut adalah...
Berat Badan (kg) Frekuensi $3-5$ $9$ $6-8$ $7$ $9-11$ $5$ $12-14$ $12$ $15-17$ $3$ $18-20$ $4$
$\begin{align}
(A)\ & 14,85\ kg \\
(B)\ & 14,75\ kg \\
(C)\ & 13,90\ kg \\
(D)\ & 13,85\ kg \\
(E)\ & 13,75\ kg
\end{align} $
Kuartil yakni suatu nilai pembatas yang membagi data menjadi empat potongan yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
Data pada tabel sanggup kita hitung yaitu total frekuensi yakni $n=40$.
- Untuk memilih letak $Q_{3}$ ada pada data ke- $\left[\frac{3}{4}(n+1) \right]$
- $Q_{3}$ terletak pada data ke- $\left[\frac{3}{4}(40+1) \right]=30,75$
- $Q_{3}$ berada pada data ke-$30,75$ artinya $Q_{3}$ berada pada kelas interval $12-14$ (*9+7+5+12=33)
- Tepi bawah kelas $Q_{3}$: $12-14$
$t_{b}= 12 - 0,5 = 11,5 $ - Frekuensi kumulatif sebelum kelas $Q_{3}$,
$f_{k}= 9+7+5=21$ - Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=12$
- Panjang kelas $c=14,5-11,5=3$
$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
& = 11,5 + \left( \frac{\frac{3}{4} \cdot 40 - 21}{12} \right)3 \\
& = 11,5 + \left( \frac{30 - 21}{12} \right)3 \\
& = 11,5 + \left( \frac{9}{12} \right)3 \\
& = 11,5 + \frac{9}{4} \\
& = 13,75
\end{align} $
$\therefore$ Pilihan yang sesuai $(E)\ 13,75\ kg$
34. Indri menggunting karton membentuk sebuah segitiga sembarang. Masing-masing titik sudutnya ditandai dengan abjad $P,\ Q,\ \text{dan}\ R$ Panjang sisi $PQ$ yakni $15\ cm$, panjang sisi $QR$ yakni $20\ cm$, dan besar sudut $Q$ yakni $30^{\circ}$. Luas segitiga $PQR$ yang dibentuk oleh Indri adalah..
$\begin{align}
(A)\ & 75\ cm^{2} \\
(B)\ & 75 \sqrt{2}\ cm^{2} \\
(C)\ & 75 \sqrt{3}\ cm^{2} \\
(D)\ & 150\ cm^{2} \\
(E)\ & 150 \sqrt{2}\ cm^{2}
\end{align}$
Segitiga yang dibentuk Indri yakni segitiga $PQR$ dimana diketahui $PQ=15\ cm$, $QR=20\ cm$, dan besar sudut $Q$ yakni $30^{\circ}$.
Luas segitiga $PQR$ sanggup kita hitung dengan menggunakan luas segitiga jikalau diketahui panjang dua sisi dan satu sudut, yaitu:
$\begin{align}
L & = \dfrac{1}{2} \cdot PQ \cdot QR\ \cdot sin\ Q \\
& = \dfrac{1}{2} \cdot PQ \cdot QR\ \cdot sin\ 30^{\circ} \\
& = \dfrac{1}{2} \cdot 15 \cdot 20 \cdot \dfrac{1}{2} \\
& = 15 \cdot 5 \\
& = 75
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(A)\ 75\ cm^{2}$
35. Bahtiar berangkat dari ke kampus pukul $06.30$ setiap pagi. Jika menggunakan kendaraan beroda empat dengan kecepatan rata-rata $40$ km/jam, beliau datang di kampus terlambat $15$ menit. Jika menggunakan motor dengan kecepatan rata-rata $60$ km/jam, beliau datang di kampus $5$ menit sebelum perkuliahan dimualai. Perkuliahan di kampus Bahtiar dimuali pukul...
$\begin{align}
(A)\ & 07.45 \\
(B)\ & 07.30 \\
(C)\ & 07.15 \\
(D)\ & 07.10 \\
(E)\ & 07.00
\end{align}$
Kita coba selesaikan dengan memisalkan jarak rumah ke kampus yakni $x$ km dan waktu yang dibutuhkan untuk hingga di kampus sempurna waktu yakni $t$ jam.
Dengan kecepatan $40$ km/jam beliau datang di kampus $15$ menit terlambat maka waktu yang dibutuhkan yakni $t+\dfrac{15}{60}$ jam.
$\begin{align}
v & = \dfrac{s}{t} \\
40 & = \dfrac{x}{t+\dfrac{15}{60}} \\
40t+10 & = x
\end{align}$
Dengan kecepatan $60$ km/jam beliau datang di kampus $5$ menit lebih cepat maka waktu yang dibutuhkan yakni $t-\dfrac{5}{60}$ jam.
$\begin{align}
v & = \dfrac{s}{t} \\
60 & = \dfrac{x}{t-\dfrac{5}{60}} \\
60t-5 & = x
\end{align}$
dari nilai $x$ yang kiat peroleh diatas sanggup kita simpulkan
$\begin{align}
40t+10 & = 60t-5 \\
10+5 & = 60t-40t \\
15 & = 20t \\
t & = \dfrac{15}{20}
t & = \dfrac{3}{4}
\end{align}$
Waktu tempuh yang dibutuhkan untuk hadir di kampus sempurna waktu yakni $t$ jam atau $\dfrac{3}{4}$ jam atau $45$ menit. Sehingga jikalau berangkat dari rumah pukul $06.30$, kampus masuk $07.15$
$\therefore$ Pilihan yang sesuai yakni $(C)\ 07.15$
36. Diketahui barisan geometri dengan $U_{5}=6$ dan $U_{9}=24$. Suku ke-4 barisan tersebut adalah...
$\begin{align}
(A)\ & 4\sqrt{3} \\
(B)\ & 3\sqrt{3} \\
(C)\ & 3\sqrt{2} \\
(D)\ & 2\sqrt{3} \\
(E)\ & 2\sqrt{2}
\end{align}$
Catatan tenatang barisan geometri untuk menuntaskan soal diatas yakni suku ke-n barisan geometri yakni $U_{n}=ar^{n-1}$.
$\begin{align}
U_{5} & = ar^{5-1} \\
6 & = ar^{4}
\end{align}$
$\begin{align}
U_{9} & = ar^{9-1} \\
24 & = ar^{8} \\
24 & = ar^{4} \cdot r^{4} \\
24 & = 6 \cdot r^{4} \\
4 & = r^{4} \\
4^{\dfrac{1}{4}} & = r \\
2^{\dfrac{1}{2}} & = r \\
\sqrt{2} & = r
\end{align}$
untuk $r=\sqrt{2}$ maka
$\begin{align}
6 & = ar^{4} \\
6 & = a (4) \\
a & = \dfrac{3}{2}
\end{align}$
$\begin{align}
U_{4} & = ar^{4-1} \\
& = ar^{3} \\
& = \dfrac{3}{2} \cdot (\sqrt{2})^{3} \\
& = \dfrac{3}{2} \cdot 2\sqrt{2} \\
& = 3\sqrt{2}
\end{align}$
$\therefore$ Pilihan yang sesuai yakni $(C)\ 3\sqrt{2}$
37. Persamaan kuadrat $2x^{2}+12x+17=0$ mempunyai akar-akar $\alpha$ dan $\beta$. Persamaan kuadrat gres yang akar-akarnya $\dfrac{\alpha-2}{2}$ dan $\dfrac{\beta-2}{2}$ yakni $ax^{2}+bx+c=0$. Nilai $2a+b+c$ adalah...
Persamaan kuadrat $2x^{2}+12x+17=0$ mempunyai akar-akar $\alpha$ dan $\beta$ maka:
$\begin{align}
\alpha + \beta & = -\dfrac{b}{a}=-\dfrac{12}{2}=-6 \\
\alpha \times \beta & = \dfrac{c}{a}=\dfrac{17}{2}=8\dfrac{1}{2}
\end{align}$
Salah satu cara menyusun persamaan kuadrat yakni dengan mengetahui hasil jumlah dan hasil kali akar persamaan kuadrat tersebut.
Jika sebuah persamaan kuadrat akar-akarnya yakni $x_{1}$ dan $x_{2}$ maka persamaan kuadrat tersebut adalah:
$x^{2}-\left( x_{1}+x_{2}\right)x+\left( x_{1} \times x_{2}\right)=0$
$\begin{align}
x_{1}+x_{2} & = \dfrac{\alpha-2}{2} + \dfrac{\beta-2}{2} \\
& = \dfrac{\alpha-2+\beta-2}{2} \\
& = \dfrac{\alpha+\beta-4}{2} \\
& = \dfrac{-6-4}{2} \\
& = -5
\end{align}$
$\begin{align}
x_{1} \times x_{2} & = \dfrac{\alpha-2}{2} \times \dfrac{\beta-2}{2} \\
& = \dfrac{\alpha \beta -2(\alpha + \beta)+4}{4} \\
& = \dfrac{8\dfrac{1}{2} -2(-6)+4}{4} \\
& = \dfrac{8\dfrac{1}{2} +16}{4} \\
& = \dfrac{24\dfrac{1}{2}}{4} \\
& = \dfrac{49}{8}
\end{align}$
Persamaan kuadrat yang gres adalah:
$\begin{align}
x^{2}-\left( x_{1}+x_{2}\right)x+\left( x_{1} \times x_{2}\right) & = 0 \\
x^{2}-\left( -5 \right)x+\left( \dfrac{29}{8} \right) & = 0 \\
x^{2}+5x+ \dfrac{49}{8} & = 0 \\
8x^{2}+40x+ 49 & =0
\end{align}$
(*soal ini mempunyai banyak jawaban)
$\therefore$ Nilai $2a+b+c$ yakni $2(8)+40+49=105$
38. Diketahui
$f(x)=\begin{cases}3x-a,\ x\leq 2 \\
2x+1,\ x \gt 2 \end{cases}$
Agar $\lim\limits_{x \to 2}f(x)$ mempunyai nilai, maka $a=...$
Berdasarkan defenisi limit, biar $\lim\limits_{x \to 2}f(x)$ mempunyai nilai maka Limit Kiri = Limit Kanan secara simbol dituliskan $\lim\limits_{x \to 2^{+}}f(x)=\lim\limits_{x \to 2^{-}}f(x)=L$
Limit kanan $\lim\limits_{x \to 2^{+}}f(x)$
$\lim\limits_{x \to 2^{+}}(2x+1)=2(2)+1=5$
Limit kiri $\lim\limits_{x \to 2^{-}}f(x)$
$\lim\limits_{x \to 2^{-}}(3x-a)=3(2)-a=6-a$
Berdasarkan defenisi biar $\lim\limits_{x \to 2}f(x)$ mempunyai nilai yaitu Limit Kiri = Limit Kanan maka:
$\begin{align}
6-a & = 5 \\
6-5 & = a \\
a & = 1
\end{align}$
$\therefore$ Nilai $a$ yakni $1$
39. Nilai $x$ yang memenuhi fungsi trigonometri $f(x)=\sqrt{2}\ cos\ 3x+1$ memotong sumbu $X$ pada interval $180^{\circ} \leq x \leq 270^{\circ}$ adalah...
Fungsi $f(x)=\sqrt{2}\ cos\ 3x+1$ memotong sumbu $x$ sehingga:
$\begin{align}
\sqrt{2}\ cos\ 3x+1 & = 0 \\
\sqrt{2}\ cos\ 3x & = -1 \\
cos\ 3x & = -\dfrac{1}{\sqrt{2}} \\
cos\ 3x & = -\dfrac{1}{2}\sqrt{2} \\
cos\ 3x & = cos\ 225
\end{align}$
$\begin{align}
3x = 225+k \cdot 360\ & \vee\ 3x = -225+k \cdot 360 \\
x = 75+k \cdot 120\ & \vee\ x = -75+k \cdot 120
\end{align}$
- Untuk $k=-1$
$x = -45 \vee\ x = -195$ - Untuk $k=0$
$x = 75 \vee\ x = -75$ - Untuk $k=1$
$x = 195 \vee\ x = 45$ - Untuk $k=2$
$x = 315 \vee\ x = 165$ - Untuk $k=3$
$x = 435 \vee\ x = 285$
$\therefore$ Nilai $x$ yang memenuhi yakni $195$
40. Gambar berikut merupakan bagan arena pameran
Banyak cara seorang pengunjung sanggup masuk dan keluar arena bazar tersebut adalah...
Pintu masuk arena bazar ada $4$ pintu dan terdapat dua gedung di dalam arena pameran, sehingga banyak cara masuk dan keluar gedung ada $2$ cara yaitu lewat geduang A atau $B$.
Total banyak cara yakni $4 \times 2 \times 2 + 4 \times 1 \times 3=16+12=28$
$\therefore$ Banyak cara yakni $28$
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Jika tertarik untuk menyimpan catatan calon guru di atas dalam bentuk file (.pdf) silahkan di d0wnl0ad pada link berikut ini:
- Soal Simulasi UNBK Matematika Sekolah Menengan Atas IPA 👀 Download
- Soal dan Pembahasan Simulasi UNBK Matematika Sekolah Menengan Atas IPA 👀 Download
Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊
Sebagai tambahan, mari kita simak video pengenalan pertidaksamaan bentuk akar;
EmoticonEmoticon