Senin, 28 Mei 2018

Bank Soal Dan Pembahasan Matematika Dasar Barisan Dan Deret Aritmetika

atatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Bar Bank Soal dan Pembahasan Matematika Dasar Barisan dan Deret AritmetikaCatatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Barisan dan Deret Aritmetika. Untuk melengkapi matematika dasar barisan dan deret arimetika, kita juga baiknya akan mempelajari matematika dasar barisan dan deret geometri dan matematika dasar barisan dan deret geometri tak hingga, dengan memahami ketiga topik ini maka problem barisan dan deret akan semakin gampang kita pelajari.

Penerapan barisan dan deret aritmetika dalam kehidupan sehari-hari juga sangat banyak, diantaranya sanggup dilihat pada soal-soal yang akan kita diskusikan. Mempelajari dan menggunakan aturan-aturan pada barisan dan deret aritmetika sangatlah mudah, kalau Anda mengikuti step by step yang kita diskusikan di bawah ini, maka anda akan dengan gampang memahami soal-soal barisan dan deret aritmetika dan menemukan solusinya.

Barisan dan deret salah satu materi matematika yang dipelajari pada Sekolah Menengan Atas dan SMP, bahkan dalam bentuk soal dongeng atau matematika realistik, soal wacana barisan dan deret sudah disisipkan pada materi matematika untuk tingkat SD.

Barisan dan Deret Bilangan

Barisan Bilangan yakni urutan bilangan-bilangan yang disusun menurut pola tertentu.

Secara simbol sederhana barisan sanggup kita tuliskan;
$U_{1}, U_{2}, U_{3}, \cdots ,U_{n}$

$U_{1}$ kita sebut Bilangan Pertama/Suku Pertama,
$U_{2}$ kita sebut Bilangan Kedua/Suku Kedua,
$U_{3}$ kita sebut Bilangan ketiga/Suku Ketiga,
$ \cdots $
$U_{n}$ kita sebut Bilangan ke-n/Suku ke-n,
Penggunaan istilah Suku Pertama, Suku Kedua dan seterusnya lebih familiar dibanding istilah Bilangan Pertama, Bilangan Kedua, jadi untuk berikutnya kita pakai istilah Suku Pertama,$ \cdots $ Suku ke-n.

Deret Bilangan merupakan penjumlahan dari suku-suku barisan.

Secara simbol sederhana deret bilangan sanggup kita tuliskan;
$U_{1}+ U_{2}+ U_{3}+ \cdots +U_{n}$

$S_{1}$ kita sebut Jumlah satu suku pertama.
$S_{1}=U_{1}$
$S_{2}$ kita sebut Jumlah dua suku pertama.
$S_{2}=U_{1}+U_{2}$
$S_{3}$ kita sebut Jumlah tiga suku pertama.
$S_{3}=U_{1}+U_{2}+U_{3}$
$ \cdots $
$S_{n}$ kita sebut Jumlah $n$ suku pertama,
$S_{n}=U_{1}+U_{2}+U_{3}+ \cdots +U_{n}$

Barisan dan Deret Aritmetika

Setelah sanggup memahami wacana barisan dan deret bilangan, kini coba kita diskusikan wacana Barisan dan Deret Bilangan Aritmetika yang sering disebut hanya Barisan Aritmetika. Suatu barisan bilangan dikatakan sebagai Barisan Aritmetika (BA) kalau selisih antara suatu suku dan suku sebelumnya sama besar.

Selisih antara suatu suku dan suku sebelumnya dinamakan dengan $beda$ ($b$).
Contoh,
$2, 5, 8, 11, 14,...$ (Barisan Aritmetika dengan $b=3$)
$10, 6, 2, -2, -6,...$ (Barisan Aritmetika dengan $b=-4$)

Pada Barisan Aritmetika kalau suku pertama diberi simbol dengan $a$ dan beda dengan $b$ maka suku-suku Barisan Aritmetika secara umum sanggup kita tuliskan menjadi;
$a,\ (a+b),\ (a+2b),\ (a+3b),\cdots, a+(n-1)b$

Sedangkan kalau Barisan Aritmetika kita tuliskan menjadi Deret Aritmetika, penulisan menjadi;
$a+\ (a+b)+\ (a+2b)+\ (a+3b)+\cdots+ \left(a+(n-1)b\right)$

Dari bentuk umum diatas kita peroleh,
  • beda=$b$
    $b=U_{2}-U_{1}=U_{7}-U_{6}$
    $b=U_{n}-U_{n-1}$
    $b=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{m}-u_{n}}{m-n}$
  • Suku ke-n
    $U_{n}=a+(n-1)b$
  • Jumlah n suku pertama
    $S_{n}=\frac{n}{2}\left ( a+U_{n} \right )$
    $S_{n}=\frac{n}{2}\left [2a+\left ( n-1 \right )b \right ]$
  • Suku Tengah berlaku untuk n bilangan ganjil
    $U_{t}=\frac{1}{2}\left ( a+U_{n} \right )$
    $S_{n}=n \cdot U_{t}$

Barisan Aritmetika Tingkat Dua

Barisan aritmetika tingkat $n$ yakni barisan yang mempunyai $n$ pola dalam membentuk sebuah barisan dan pada pola ke-$n$ pola barisan menggunakan konsep aritmetika atau beda pada barisan yakni sama. Barisan aritmetika tingkat dua berarti barisan mempunyai dua pola dan pada pola yang kedua beda barisan yakni sama.

Sebagai referensi kita perhatikan barisan berikut:
Barisan aritmetika tingkat dua $6, 18, 36, 60, 90, 126, \cdots$
atatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Bar Bank Soal dan Pembahasan Matematika Dasar Barisan dan Deret Aritmetika

Barisan aritmetika tingkat tiga $1, 7, 25, 121, 211, 337, 505, \cdots$
atatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Bar Bank Soal dan Pembahasan Matematika Dasar Barisan dan Deret Aritmetika
Menggunakan faktorial $(*n!=n \cdot (n-1) \cdot (n-2) \cdots 1)$ suku ke-$n$ barisan aritmetika tingkat dua yakni $U_n=a+ \dfrac{(n-1)b}{1!} + \dfrac{(n-1)(n-2)c}{2!}$.

Jika kita lanjutkan suku ke-$n$ untuk barisan aritmetika tingkat ketiga yakni $U_n=a+ \dfrac{(n-1)b}{1!}+ \dfrac{(n-1)(n-2)c}{2!}+\dfrac{(n-1)(n-2)(n-3)d}{3!}$

Barisan dan Deret Aritmetika untuk beberapa buku menggunakan istilah dengan sebutan Deret Hitung. untuk memahami Barisan Aritmetika dan Deret Aritmetika ini coba kita diskusikan beberapa referensi soal yang pernah diujikan pada Ujian Nasional dan SBMPTN atau ujian lain yang pernah diselenggarakan pada sekolah.

1. Soal UNBK Matematika IPA 2018 (*Soal Lengkap)

Diketahui suatu barisan aritmetika dengan $U_{2}=8$ dan $U_{6}=20$. Jumlah $6$ suku pertama barisan tersebut adalah...
$\begin{align}
(A)\ & 150 \\
(B)\ & 75 \\
(C)\ & 50 \\
(D)\ & 28 \\
(E)\ & 25
\end{align}$
Alternatif Pembahasan:

Berdasarkan informasi dari soal yaitu barisan aritmetika, maka kita butuh informasi berikut ini;
$U_{n}=a+(n-1)b$
$S_{n}=\frac{n}{2}\left(2a+(n-1)b \right)$

$U_{2}=8\ \rightarrow\ a+b=8$
$U_{6}=20\ \rightarrow\ a+5b=20$
$\begin{array}{c|c|cc}
a+b= 8 & \\
a+5b = 20 & (-) \\
\hline
-4b = -12 & \\
b = 3 & a= 5
\end{array} $

Untuk $b=3$ maka $a=5$, dan $S_{6}$ adalah
$\begin{align}
S_{6} & =\frac{6}{2} \left(2a+(6-1)b \right) \\
&=3 \left(2(5)+(5)(3) \right) \\
&=3 \left(10+15 \right) \\
&=3 \left(25 \right) \\
&=75
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(B)\ 75$

2. Soal SPMB 2007 (*Soal Lengkap)

Panjang sisi sebuah segitiga siku-siku membentuk barisan aritmetika. Jika keliling segitiga tersebut yakni $72$, luasnya adalah...
$\begin{align}
(A)\ & 216 \\
(B)\ & 363 \\
(C)\ & 364 \\
(D)\ & 383 \\
(E)\ & 432 \\
\end{align}$
Alternatif Pembahasan:

atatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Bar Bank Soal dan Pembahasan Matematika Dasar Barisan dan Deret Aritmetika
Keliling Segitiga = jumlah ketiga sisinya
$\begin{align}
K_\Delta &=a+(a+b)+(a+2b) \\
72 &=3a+3b \\
24 &=a+b \cdots pers(1)
\end{align}$
Karena segitiga yakni segitiga siku-siku sehingga berlaku teorema phytagoras (kuadrat panjang sisi miring (hipotenusa) sama dengan jumlah kuadrat panjang dari dua sisi lainnya).

$\begin{align}
(a+2b)^{2} &=a^{2}+(a+b)^{2} \\
a^{2}+4ab+4b^{2} &=a^2+a^{2}+2ab+b^{2} \\
0 &=a^{2}-2ab-3b^{2} \\
0 &=(a-b)^{2}-4b^{2} \\
(a-b)^{2} &=4b^{2} \\
(a-b)^{2} &=(2b)^{2} \\
a-b &= 2b \\
a &=3b\ \text{substitusi ke pers(1)} \\
24 &=3b+b \\
4b &= 24 \\
b=6\ & \text{maka}\ a=18 \\
\end{align}$
Luas Segitiga
$L_\Delta=\frac{1}{2}\cdot a\cdot (a+b)$
$L_\Delta=\frac{1}{2}\cdot 18\cdot (24)$
$L_\Delta=216$

Sebagai alternatif penyelesaian, soal ini sanggup dikerjakan dengan cara menggunakan perbandingan sisi-sisi segitiga siku-siku. Perbandingan sisi-sisi segitiga siku-siku alasannya membentuk Barisan Aritmetika sehingga berlaku $a:b:c=3x:4x:5x$.

$\begin{align}
K_\Delta &= 3x+4x+5x \\
72 &=12x \\
6 &=x
\end{align}$

$\begin{align}
L_\Delta &=\frac{1}{2}(4x)(3x) \\
&=6x^{2} \\
&=6(36)=216
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(A)\ 216$

3. Soal SBMPTN 2018 Kode 526 (*Soal Lengkap)

Empat bilangan membentuk suatu barisan aritmetika. Jika bilangan pertama dan bilangan kedua tetap, serta bilangan ketiga ditambah bilangan pertama dan bilangan keempat dikalikan 2, maka terbentuk suatu barisan geometri. Jika beda suku-suku pada barisan aritmetika yakni 2, maka jumlah empat bilangan pertama pada barisan geometri tersebut adalah...
$\begin{align}
(A)\ & 8 \\
(B)\ & 20 \\
(C)\ & 24 \\
(D)\ & 30 \\
(E)\ & 36 \\
\end{align}$
Alternatif Pembahasan:

Untuk soal ini ada penggabungan materi antara barisan aritmetika dan barisan geometri, jadi sedikit materi dari barisan geometri harus kita ketahui;

Misalkan barisan aritmetika dengan $b=2$ yakni $(a),\ (a+2),\ (a+4),\ (a+6)$.

Barisan Geometri yang terbentuk:
$(a),\ (a+2),\ (a+4)+(a),\ 2(a+6)$.
$(a),\ (a+2),\ (2a+4),\ (2a+12)$.
dengan menggunakan ciri khas dari $BG$, kita peroleh
$\begin{align}
u_{2}^{2} & =u_{1} \cdot u_{3} \\
(a+2)^{2} & = a \cdot (2a+4) \\
a^{2}+4a+4 & = 2a^{2}+4a \\
a^{2}-4 & =0 \\
(a-2)(a+2) & =0 \\
a=2\ & \text{atau}\ a=-2
\end{align}$

Untuk $a=-2$ barisan adalah: $-2,\ 0,\ 0,\ 8$ bukan $BG$.
Untuk $a=2$ barisan adalah: $2,\ 4,\ 8,\ 16$ merupakan $BG$ sehingga jumlahnya yakni $30$

$\therefore$ Pilihan yang sesuai yakni $(D)\ 30$

4. Soal SBMPTN 2018 Kode 527 (*Soal Lengkap)

Diketahui suatu barisan geometri yang terdiri atas empat suku dengan rasio $\dfrac{1}{2}$ dan suatu barisan aritmetika yang terdiri atas tiga suku dengan beda $b$. Jumlah semua suku barisan geometri tersebut dan jumlah semua suku barisan aritmetika tersebut masing-masing bernilai $1$. Jika suku pertama barisan geometri tersebut sama dengan suku ketiga barisan aritmetika, maka nilai $b$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{15} \\
(B)\ & \dfrac{2}{15} \\
(C)\ & \dfrac{1}{5} \\
(D)\ & \dfrac{1}{3} \\
(E)\ & \dfrac{8}{15}
\end{align}$
Alternatif Pembahasan:

Untuk soal ini ada penggabungan materi antara barisan aritmetika dan barisan geometri, jadi sedikit materi dari barisan geometri harus kita ketahui;

Misalkan:$BG$ dengan $r=\dfrac{1}{2}$ yakni $a,\ \dfrac{1}{2}a,\ \dfrac{1}{4}a,\ \dfrac{1}{8}a$.
$\begin{align}
a+ \dfrac{1}{2}a+ \dfrac{1}{4}a+ \dfrac{1}{8}a & = 1 \\
\dfrac{8}{8}a+ \dfrac{4}{8}a+ \dfrac{2}{8}a+ \dfrac{1}{8}a & = 1 \\
\dfrac{8+4+2+1}{8}a & = 1 \\
15a & = 8 \\
a & = \dfrac{8}{15}
\end{align}$

Misalkan $BA$ dengan $b=b$ yakni $u_{1}-b,\ u_{1},\ u_{1}+b$.
$\begin{align}
u_{1}-b+ u_{1}+ u_{1}+b & = 1 \\
3u_{1} & = 1 \\
u_{1} & = \dfrac{1}{3}
\end{align}$

Karena $u_{1}$ $BG$ sama dengan $u_{3}$ $BA$, maka
$\begin{align}
u_{1}+b & = a \\
\dfrac{1}{3}+b & = \dfrac{8}{15} \\
b & = \dfrac{8}{15}-\dfrac{1}{3} \\
& = \dfrac{8}{15}-\dfrac{5}{15} \\
& = \dfrac{3}{15}=\dfrac{1}{5}
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ \dfrac{1}{5}$

5. Soal SIMAK UI 2018 Kode 641 (*Soal Lengkap)

Sebelas buah bilangan membentuk deret aritmetika dan mempunyai jumlah $187$. Jika pada setiap $2$ suku yang berurutan pada deret tersebut disisipkan rat-rata dari $2$ suku yang berurutan tersebut, jumlah deret yang gres adalah...
$\begin{align}
(A)\ & 289 \\
(B)\ & 323 \\
(C)\ & 357 \\
(D)\ & 399 \\
(E)\ & 418
\end{align}$
Alternatif Pembahasan:

Misalkan Deret Aritmetika$(a)+(a+b)+(a+2b)+\cdots+(a+9b)+(a+10b)$ dengan $S_{11}=187$

$\begin{align}
S_{n} & = \dfrac{n}{2} \left(2a+(n-1)b \right) \\
S_{11} & = \dfrac{11}{2} \left(2a+(11-1)b \right) \\
187 & = \dfrac{11}{2} \left(2a+10b \right) \\
187 & = 11a+55b \\
17 & = a+5b
\end{align}$

Diantara dua suku disisipkan rata-rata kedua suku, sehingga deret yang gres adalah:
$(a)+\dfrac{1}{2}(2a+b)+(a+b)+\dfrac{1}{2}(2a+3b)+(a+2b)+\cdots+(a+9b)+\dfrac{1}{2}(2a+19b)+(a+10b)$

Banyak suku yang sanggup disisipkan yakni $10$ suku baru, deret yang disisipkan adalah:
$ \dfrac{1}{2}(2a+b) +\dfrac{1}{2}(2a+3b)+\dfrac{1}{2}(2a+5b)+\cdots$$+\dfrac{1}{2}(2a+19b)$
$ =\dfrac{1}{2} \left( (2a+b) + (2a+3b)+ (2a+5b)+\cdots+ (2a+19b) \right)$
$ =\dfrac{1}{2} \left( 2a \times 10 +(b+3b+5b+\cdots+19b) \right)$
$ =\dfrac{1}{2} \left( 20a +100b \right)$
$ =\dfrac{1}{2} \cdot 20 \left( a +5b \right)$
$ =10 \left( 17 \right)$
$ =170$

Jumlah deret yang gres yakni $170+187=357$

$\therefore$ Pilihan yang sesuai yakni $(C)\ 357$

6. Soal UMB-PT 2014 Kode 672 (*Soal Lengkap)

Jika jumlah $n$ suku pertama dari suatu deret yakni $S_{n}=(n-1)(n)(n+1)$, maka suku ke-10 deret tersebut adalah...
$\begin{align}
(A)\ & 90 \\
(B)\ & 180 \\
(C)\ & 270 \\
(D)\ & 540 \\
(E)\ & 990
\end{align}$
Alternatif Pembahasan:

Pada soal bahwa $S_{n}=(n-1)(n)(n+1)$, sehingga berlaku:
$\begin{align}
S_{n} & = (n-1)(n)(n+1) \\
S_{1} & = 0 \\
S_{2} & = (1)(2)(3) =6 \\
S_{3} & = (2)(3)(4) =24 \\
S_{4} & = (3)(4)(5) =60 \\
S_{5} & = (4)(5)(6) =120 \\
\vdots
\end{align}$
Kita ketahui bahwa $U_{n}=S_{n}-S_{n-1}$, sehingga kita peroleh,
$\begin{align}
U_{1} & = 0 \\
U_{2} & = S_{2}-S_{1}=6-0=6 \\
U_{3} & = S_{3}-S_{2}=24-6=18 \\
U_{4} & = S_{4}-S_{3}=60-24=36 \\
U_{5} & = S_{5}-S_{4}=120-60=60 \\
\vdots
\end{align}$
Deret yang dihasilkan yakni $0+6+18+36+60+\cdots$, ini yakni deret aritmetika tingkat dua dimana $a=0$, $b=6$ dan $c=6$ sehingga:
$\begin{align}
U_n & = a+ \dfrac{(n-1)b}{1!} + \dfrac{(n-1)(n-2)c}{2!} \\
U_{10} & = 0+ \dfrac{(10-1)6}{1!} + \dfrac{(10-1)(10-2)6}{2!} \\
& = \dfrac{(9)6}{1} + \dfrac{(9)(8)6}{2} \\
& = 54 + 216 = 270
\end{align}$

Deret aritmetika tingkat dua umumnya mempunyai pola yang unik, untuk soal di atas polanya adalah
$\begin{align}
0 & = 1 \times 3 \times 0 \\
6 & = 2 \times 3 \times 1 \\
18 & = 3 \times 3 \times 2 \\
36 & = 4 \times 3 \times 3 \\
\vdots \\
U_{10} & = 10 \times 3 \times 9 \\
& = 270
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ 270$

7. Soal UM UGM 2014 Kode 522 (*Soal Lengkap)

Dalam suatu barisan aritmetika, nilai rata-rata dari $4$ suku pertama yakni $8$ dan nilai rata-rata $9$ suku pertama yakni $3$. Jumlah $n$ suku pertama barisan tersebut adalah...
$\begin{align}
(A)\ & -10n+n^{2} \\
(B)\ & 11n+n^{2} \\
(C)\ & 12n-n^{2} \\
(D)\ & -10n-n^{2} \\
(E)\ & 8n-n^{2}
\end{align}$
Alternatif Pembahasan:

Sebagai pemanis sedikit catatan wacana tentang rata-rata yaitu $\bar{x}=\dfrac{x_{1} + x_{2} + \cdots\ + x_{n}}{n}$.
$\begin{align}
\bar{x} &= \dfrac{x_{1} + x_{2} + \cdots\ + x_{n}}{n} \\
8 & = \dfrac{x_{1} + x_{2} + \cdots\ + x_{4}}{4} \\
32 & = x_{1} + x_{2} + \cdots + x_{4} \\
32 & = a + a+b + a+2b + a+3b \\
32 & = 4a + 6b \\
16 & = 2a + 3b \\
\hline
3 & = \dfrac{x_{1} + x_{2} + \cdots\ + x_{9}}{9} \\
27 & = x_{1} + x_{2} + \cdots\ + x_{9} \\
27 & = x_{1} + x_{2} + x_{3}+ x_{4}+x_{5} + \cdots\ + x_{9} \\
27 & = 32 +x_{5} + \cdots\ + x_{9} \\
-5 & = x_{5} + \cdots\ + x_{9} \\
-5 & = a+4b+a+5b+a+6b+a+7b+a+8b \\
-5 & = 5a+30b \\
-1 & = a+6b
\end{align}$

$\begin{array}{c|c|cc}
a+6b= -1 & \\
2a+3b = 16 & \\
\hline
2a+12b= -2 & \\
2a+3b = 16 & (-) \\
\hline
9b=-18 & \\
b=-2 & a= 11
\end{array} $

$\begin{align}
S_{n} &= \dfrac{n}{2}\left(2a+(n-1)b \right) \\
&= \dfrac{n}{2} \left( 2(11)+(n-1)(-2) \right) \\
&= \dfrac{n}{2} \left( 22 -2n+2 \right) \\
&= \dfrac{n}{2} \left( 24 -2n \right) \\
&= 12n - n^{2}
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ 12n - n^{2}$

8. Soal UM UGM 2014 Kode 522 (*Soal Lengkap)

Tiga bilangan membentuk barisan aritmetika, Jika jumlah suku ke-1 dan suku ke-3 yakni $30$ dan jumlah dari logaritma suku ke-1, ke-2 dan ke-3 yakni $3+{}^\!\log 3$, maka suku ke-1 barisan tersebut adalah...
$\begin{align}
(A)\ & -5\ \text{atau}\ 5 \\
(B)\ & 5\ \text{atau}\ -10 \\
(C)\ & 5\ \text{atau}\ 25 \\
(D)\ & 10\ \text{atau}\ 20 \\
(E)\ & 25\ \text{atau}\ 15
\end{align}$
Alternatif Pembahasan:

Tiga bilangan membentuk barisan aritmetika, kita misalkan $(a-b), (a), (a+b)$, Sebagai pemanis sedikit catatan wacana tentang rata-rata yaitu $\bar{x}=\dfrac{x_{1} + x_{2} + \cdots\ + x_{n}}{n}$.
$\begin{align}
U_{1}+ U_{3} &= 30 \\
a-b+a+b &= 30 \\
2a &= 30 \\
a &= 15
\end{align}$
Untuk $a=15$ dan jumlah dari logaritma suku ke-1, ke-2 dan ke-3 yakni $3+{}^\!\log 3$ maka kita peroleh:
$\begin{align}
{}^\!\log a+{}^\!\log (a+b)+{}^\!\log (a+2b) &= 3+{}^\!\log 3 \\
{}^\!\log (a-b)(a)(a+b) &= {}^\!\log 1000+{}^\!\log 3 \\
{}^\!\log (15-b)(15)(15+b) &= {}^\!\log 3000 \\
(15-b)(15)(15+b) &= 3000 \\
(15-b) (15+b) &= 200 \\
225-b^{2} &= 200 \\
b^{2} &= 225-200=25 \\
b &= \pm 5
\end{align} $

Untuk $b=5$ dan $a=15$ maka barisan yakni $10,15,20$
Untuk $b=-5$ dan $a=15$ maka barisan yakni $20,15,10$

$\therefore$ Pilihan yang sesuai yakni $(D)\ 10\ \text{atau}\ 20$

9. Soal SBMPTN 2014 Kode 677 (*Soal Lengkap)

Jika $a_{1}, a_{2}, a_{3}$ yakni barisan aritmetika dan $a_{1}, a_{2}, a_{1}+a_{3}$ yakni barisan geometri, maka $\dfrac{a_{3}}{a_{1}}=\cdots$
$\begin{align}
(A)\ & 6 \\
(B)\ & 4 \\
(C)\ & 3 \\
(D)\ & 2 \\
(E)\ & 1
\end{align}$
Alternatif Pembahasan:

Dari barisan aritmetika $a_{1}, a_{2}, a_{3}$ kita peroleh $2a_{2}=a_{1} + a_{3}$

Dari barisan geometri $a_{1}, a_{2}, a_{1}+a_{3}$ kita peroleh:
$\begin{align}
a_{2}^{2} &= a_{1} \left( a_{1}+a_{3} \right) \\
a_{2}^{2} &= a_{1} \left( 2a_{2} \right) \\
a_{2}^{2} &= 2a_{1} \cdot a_{2} \\
a_{2} &= 2 a_{1}
\end{align}$

Persamaan yang kita peroleh di atas kita substitusi ke persamaan $2a_{2}=a_{1} + a_{3}$, sehingga kita peroleh:
$\begin{align}
2 \left( 2 a_{1} \right) &= a_{1} + a_{3} \\
4 a_{1} &= a_{1} + a_{3} \\
3 a_{1} &= a_{3} \\
\dfrac{a_{3}}{a_{1}} &= \dfrac{3a_{1}}{a_{1}} \\
&= 3
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ 3$


10. Soal SBMPTN 2014 Kode 613 (*Soal Lengkap)

Jumlah suku ke-4 dan suku ke-5 dari suatu barisan arimetika yakni $55$, sedangkan suku ke-9 dikurangi dua kali suku ke-2 bernilai $1$. Jumlah tiga suku pertama barisan tersebut adalah...
$\begin{align}
(A)\ & 17 \\
(B)\ & 35 \\
(C)\ & 37 \\
(D)\ & 40 \\
(E)\ & 60
\end{align}$
Alternatif Pembahasan:

Dari barisan aritmetika $a, a+b, a+2b,\cdots , a+(n-1)b$ kita peroleh:
$\begin{align}
U_{4}+U_{5} &= 55 \\
a+3b +a+4b &= 55 \\
2a+7b &= 55 \\
U_{9}-2U_{2} &= 1 \\
a+8b-2(a+b) &= 1 \\
a+8b-2 a-2b &= 1 \\
-a+6b &= 1
\end{align}$

Persamaan yang kita peroleh di atas coab kita eliminasi atau substitusi:
$\begin{array}{c|c|cc}
2a+7b = 55 & \\
-a+6b = 1 & \\
\hline
2a+7b = 55 & \\
-2a+12b = 2 (+) & \\
\hline
19b = 57 & \\
b = 3 & a= 17
\end{array} $

Jumlah tiga suku pertama
$\begin{align}
S_{3} &= 17+20+23 \\
&= 60
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(E)\ 60$

11. Soal SBMPTN 2014 Kode 613 (*Soal Lengkap)

Diketahui $x_{1}$ dan $x_{2}$ akar-akar real persamaan $x^{2}+3x+p=0$, dengan $x_{1}$ dan $x_{2}$ kedua-duanya tidak sama dengan nol. Jika $x_{1}+x_{2},\ x_{1}x_{2},$ dan $x_{1}^{2}x_{2}^{2}$ merupakan tiga suku pertama barisan aritmetika, maka $p=\cdots$
$\begin{align}
(A)\ & -3 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 3
\end{align}$
Alternatif Pembahasan:

Untuk sanggup menuntaskan soal di atas coba kita ambil sedikit catatan wacana akar-akar persamaan kuadrat $x^{2}+3x+p=0$, yaitu:

  • $x_{1}+x_{2}=-\dfrac{b}{a}=-\dfrac{3}{1}=-3$
  • $x_{1} x_{2}= \dfrac{c}{a}= \dfrac{p}{1}=p$
  • $ x_{1}^{2} x_{2}^{2}= \left( x_{1} x_{2} \right)^{2} = p^{2}$
Berdasarkan data di atas barisan aritmetika yakni $-3,\ p,\ p^{2}$
$\begin{align}
2U_{2} &= U_{1}+ U_{3} \\
2p &= -3 +p^{2} \\
p^{2}-2p-3 &= 0 \\
(p-3)(p+1) &= 0 \\
p=3\ \text{atau}\ p=-1 & \\
\end{align}$

Untuk $p=3$ tidak memenuhi alasannya menjadikan $x^{2}+3x+p=0$ akar-akarnya tidak real, sehingga yang memenuhi yakni untuk $p=-1$.

$\therefore$ Pilihan yang sesuai yakni $(B)\ -1$

12. Soal SBMPTN 2014 Kode 651 (*Soal Lengkap)

Suku tengah suatu barisan aritmetika yakni $ 23$. Jika suku terakhirnya $43$ dan suku ketiganya $13$, maka banyak suku barisan itu adalah...
$\begin{align}
(A)\ & 5 \\
(B)\ & 7 \\
(C)\ & 9 \\
(D)\ & 11 \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

Diketahui suku tengah $23$ dan $U_{n}=43$ sehingga;
$\begin{align}
U_{t} &= \frac{1}{2}\left ( a+U_{n} \right ) \\
23 &= \frac{1}{2}\left ( a+43 \right ) \\
46 &= a+43 \\
a &= 3
\end{align}$

Karena $U_{3}=13=a+2b$ dan $a=3$ sehingga $3+2b=13$, $ b=5$
$\begin{align}
U_{n} &= a+(n-1)b \\
43 &= 3+(n-1)5 \\
43 &= 3+5n-5 \\
43 &= 5n-2 \\
45 &= 5n \\
9 &= n
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ 9$

13. Soal SBMPTN 2014 Kode 663 (*Soal Lengkap)

Tujuh bilangan berjumlah $133$ membentuk barisan aritmetika. Di setiap dua suku berurutan di barisan tersebut disisipkan rata-rata kedua suku tersebut. Jumlah semua bilangan di barisan gres adalah...
$\begin{align}
(A)\ & 200 \\
(B)\ & 240 \\
(C)\ & 247 \\
(D)\ & 250 \\
(E)\ & 251
\end{align}$
Alternatif Pembahasan:

Dari deret aritmetika $a+a+b+a+2b+ \cdots+ a+6b=133$ sehingga $7a+21b=133$ atau $ a+3b=19$.

Di setiap dua suku berurutan di barisan tersebut disisipkan rata-rata kedua suku tersebut sehinga bilangan yang disisipkan itu ada $6$ bilangan yaitu $\dfrac{2a+b}{2}$, $\dfrac{2a+3b}{2}$, $\dfrac{2a+5b}{2}$, $\dfrac{2a+7b}{2}$, $\dfrac{2a+9b}{2}$, dan $\dfrac{2a+11b}{2}$.

Jumlah bilangan yang disisipkan yakni
$\dfrac{2a+b}{2}+\dfrac{2a+3b}{2}+\dfrac{2a+5b}{2}+\dfrac{2a+7b}{2}+\dfrac{2a+9b}{2}+\dfrac{2a+11b}{2}$.
$=\dfrac{12a+36b}{2}$.
$=6a+18b $
$=6(a+3b) $
$=6(19)$
$=114$

Jumlah semua bilangan di barisan gres yakni $133+114=247$

$\therefore$ Pilihan yang sesuai yakni $(C)\ 247$

14. Soal SIMAK UI 2013 Kode 334 (*Soal Lengkap)

Jika diketahui bahwa $x=10-10\dfrac{1}{3}+10\dfrac{2}{3}-\cdots+40$, nilai $x$ yang memenuhi adalah...
$\begin{align}
(A)\ & 1150 \\
(B)\ & 1125 \\
(C)\ & 690 \\
(D)\ & 45 \\
(E)\ & 25
\end{align}$
Alternatif Pembahasan:

Deret $10-10\dfrac{1}{3}+10\dfrac{2}{3}-\cdots+40$ kita coba manipulasi bentuknya menjadi:
$\begin{align}
& 10-10\dfrac{1}{3}+10\dfrac{2}{3}-\cdots+40 \\
& = \dfrac{1}{3} \left( 30-31+32-\cdots+120 \right) \\
& = \dfrac{1}{3} \left( 30 +32+34+\cdots+120 \right)-\dfrac{1}{3} \left( 31+33+35+\cdots+119 \right) \\
& = \dfrac{1}{3} \left( 30 +32+34+\cdots+120 \right)-\dfrac{1}{3} \left( 31+33+35+\cdots+119 \right) \\
& = \dfrac{1}{3} \left( \dfrac{46}{2} (30+120) \right)-\dfrac{1}{3} \left( \dfrac{45}{2} (31+119) \right) \\
& = \dfrac{1}{3} \left( 46 \cdot 75 \right)-\dfrac{1}{3} \left( 45 \cdot 75 \right) \\
& = \dfrac{1}{3} \cdot 75 \left( 46 - 45 \right) \\
& = 25
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(E)\ 25$

15. Soal SIMAK UI 2013 Kode 333 (*Soal Lengkap)

Diketahui bilangan $a,\ b,\ c$ membentuk barisan geometri. Bilangan $a,\ b,\ c-2$ membentuk barisan aritmetika dan bilangan $a,\ b+2,\ c+10$ membentuk barisan geometri. Jumlah semua nilai yang mungkin untuk $b$ adalah...
$\begin{align}
(A)\ & \dfrac{14}{9} \\
(B)\ & \dfrac{20}{9} \\
(C)\ & \dfrac{32}{9} \\
(D)\ & \dfrac{40}{9} \\
(E)\ & \dfrac{80}{9}
\end{align}$
Alternatif Pembahasan:

Untuk soal ini ada penggabungan materi antara barisan aritmetika dan barisan geometri, jadi sedikit materi dari barisan geometri harus kita ketahui;

  • Dari barisan geometri $a,\ b,\ c$ kita peroleh $b^{2}=ac\ \cdots \text{pers.(1)}$
  • Dari barisan aritmetika $a,\ b,\ c-2$ kita peroleh $2b=a+c-2\ \cdots \text{pers.(2)}$
  • Dari barisan geometri $a,\ b+2,\ c+10$ kita peroleh $(b+2)^{2}=a(c+10)\ \cdots \text{pers.(3)}$

Jika kita subsitusi $\text{pers.}(1)$ dan $(2)$ ke $\text{pers.}(3)$, sehingga kita peroleh:
$\begin{align}
(b+2)^{2} & = a(c+10) \\
b^{2}+4b+4 & = a c+10a \\
ac+2(a+c-2)+4 & = a c+10a \\
2 a+2c-4+4 & = 10a \\
a+ c & = 5a \\
c & = 4a\ \cdots\ \text{pers.(4)} \\
2b & = a+ c-2 \\
2b & = a+ 4a-2 \\
2b+2 & = 5a \\
a & = \dfrac{2b+2}{5}\ \cdots \text{pers.(5)}
\end{align}$

$\text{pers.}(4)$ dan $(5)$ kita substitusikan ke $\text{pers.}(1)$, sehingga kita peroleh:
$\begin{align}
b^{2} & = ac \\
b^{2} & = a \left( 4a \right) \\
b^{2} & = 4a^{2} \\
b^{2} & = 4\left( \dfrac{2b+2}{5} \right)^{2} \\
b^{2} & = 4\left( \dfrac{4b^{2}+8b+4}{25} \right) \\
25b^{2} & = 16b^{2}+32b+16 \\
9b^{2}-32b-16 & = 0
\end{align}$
Jumlah semua nilai $b$ yang mungkin yakni $b_{1}+b_{2}=-\dfrac{-32}{9}=\dfrac{32}{9}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ \dfrac{32}{9}$

16. Soal SIMAK UI 2013 Kode 331 (*Soal Lengkap)

Diketahui bahwa $n$ yakni bilangan asli. Misalkan $S(n)$ menyatakan jumlah setiap digit dari $n$ (secagai contoh: $n=1234$. $S(1234)=1+2+3+4=10$), maka nilai $S\left( S(n) \right)$ yang memenuhi persamaan $n+S(n)+S\left( S(n) \right)=2013$ adalah...
$\begin{align}
(1)\ & 2 \\
(2)\ & 5 \\
(3)\ & 8 \\
(4)\ & 20
\end{align}$
Alternatif Pembahasan:

Untuk soal ini rencana mau tidak diketik, alasannya tidak termasuk barisan aritmetika atau barisan geometri. Tetapi alasannya termasuk kategori soal HOTS kita tampilkan pada barisan aritmetika dan barisan geometri;

Dari persamaan $n+S(n)+S\left( S(n) \right)=2013$;

  • $n \gt S(n) \gt S\left( S(n) \right)$, menurut ketidaksamaan ini biar mendapat hasil penjumlahan $2013$ maka $n$ yakni bilangan $4$ angka dan kurang dari $2013$
  • Jika $1000 \geq n \leq 1999$, maka $S(n)_{max}=S(1999)=1+9+9+9=28$ dan $S \left( S(n) \right)_{max}=S(28)=2+8=10$
$\begin{align}
n+S(n)+S\left( S(n) \right) & \leq n + 28 +10 \\
2013 & \leq n + 38 \\
2013-38 & \leq n \\
1975 & \leq n \\
1975 & \leq n \lt 2013
\end{align}$
Dari batasan nilai $n$ di atas kita coba lakukan uji nilai $n$;
UJI NILAI
$n$$S(n)$ $S \left( S(n) \right)$ $n+S(n)+S\left( S(n) \right)$
$1975$ $1+9+7+5=22$ $2+2=4$ $1975+22+4=2001$
$\cdots$ $\cdots$ $\cdots$ $\cdots$
$1979$ $1+9+7+9=26$ $2+6=8$ $1979+26+8=2013$
$\cdots$ $\cdots$ $\cdots$ $\cdots$
$1985$ $1+9+8+5=23$ $2+3=5$ $1985+23+5=2013$
$\cdots$ $\cdots$ $\cdots$ $\cdots$
$1991$ $1+9+9+1=20$ $2+0=2$ $1991+20+2=2013$
$\cdots$ $\cdots$ $\cdots$ $\cdots$
$2003$ $2+0+0+3=5$ $5=5$ $2003+5+5=2013$
$\cdots$ $\cdots$ $\cdots$ $\cdots$
Nilai $S\left( S(n) \right)$ yang mungkin yakni $2, 5,\ 8$

$\therefore$ Pilihan yang sesuai yakni $(A)\ (1)\ (2)\ (3)$

17. Soal SIMAK UI 2013 Kode 331 (*Soal Lengkap)

Diketahui bahwa $x,\ a_{1},\ a_{2},\ a_{3},\ y$ dan $x,\ b_{1},\ b_{2},\ b_{3},\ b_{4},\ b_{5},\ y$ dengan $ x \neq y$ yakni dua buah barisan aritmetika, maka $\dfrac{a_{3}-a_{2}}{b_{5}-b_{3}}=\cdots$
$\begin{align}
(1)\ & 2 \\
(2)\ & 5 \\
(3)\ & 8 \\
(4)\ & 20
\end{align}$
Alternatif Pembahasan:

Dari barisan $x,\ a_{1},\ a_{2},\ a_{3},\ y$;

  • $u_{1}=x$ dan misal beda$=p$ maka $p=\dfrac{y-x}{4}$ dan $u_{n}=x+(n-1)p$
  • $a_{2}=x+p$ dan $a_{3}=x+2p$
Dari barisan $x,\ b_{1},\ b_{2},\ b_{3},\ b_{4},\ b_{5},\ y$;
  • $u_{1}=x$ dan misal beda$=q$ maka $q=\dfrac{y-x}{6}$ dan $u_{n}=x+(n-1)q$
  • $b_{3}=x+2q$ dan $b_{5}=x+4q$
$\begin{align}
\dfrac{a_{3}-a_{2}}{b_{5}-b_{3}} &= \dfrac{\left(x+2p \right)-\left(x+p \right)}{\left(x+4q \right)-\left(x+2q \right)} \\
&= \dfrac{ x+2p - x-p }{ x+4q - x-2q } \\
&= \dfrac{ p }{ 2q } \\
&= \dfrac{ 1 }{ 2 } \cdot \dfrac{ \dfrac{y-x}{4} }{ \dfrac{y-x}{6} } \\
&= \dfrac{ 1 }{ 2 } \cdot \dfrac{ 6 }{ 4 } \\
&= \dfrac{ 6 }{ 8 } = \dfrac{ 3 }{ 4 }
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ \dfrac{ 3 }{ 4 }$

18. Soal SIMAK UI 2013 Kode 331 (*Soal Lengkap)

Jika diketahui bahwa $x= \dfrac{1}{2013}-\dfrac{2}{2013}+\dfrac{3}{2013}-\dfrac{4}{2013}+\cdots-\dfrac{2012}{2013}$, nilai $x$ yang memenuhi adalah...
$\begin{align}
(A)\ & -\dfrac{1007}{2013} \\
(B)\ & -\dfrac{1006}{2013} \\
(C)\ & \dfrac{1}{2013} \\
(D)\ & \dfrac{1006}{2013} \\
(E)\ & \dfrac{1007}{2013}
\end{align}$
Alternatif Pembahasan:

Deret $x$ kita coba manipulasi bentuknya menjadi:
$\begin{align}
& \dfrac{1}{2013}-\dfrac{2}{2013}+\dfrac{3}{2013}-\dfrac{4}{2013}+\cdots-\dfrac{2012}{2013} \\
& = \dfrac{1}{2013} \left( 1-2+3-4+\cdots+2011-2012 \right) \\
& = \dfrac{1}{2013} \left( (1-2)+(3-4)+\cdots+(2011-2012) \right) \\
& = \dfrac{1}{2013} \left( (-1)+(-1)+\cdots+(-1) \right) \\
& = \dfrac{1}{2013} \left( \dfrac{2012}{2} \times (-1) \right) \\
& = \dfrac{1}{2013} \left( -1006 \right) \\
& = -\dfrac{1006}{2013}
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(B)\ -\dfrac{1006}{2013}$


19. Soal UMB-PT 2013 Kode 327 (*Soal Lengkap)

Jika jumlah $n$ suku pertama dari suatu deret yakni $S_{n}=2n+3n^{2}$, maka jumlah suku ke-6 dan suku ke-11 dari barisan tersebut adalah...
$\begin{align}
(A)\ & 60 \\
(B)\ & 80 \\
(C)\ & 100 \\
(D)\ & 130 \\
(E)\ & 170
\end{align}$
Alternatif Pembahasan:

Pada soal bahwa $S_{n}=2n+3n^{2}$, sehingga berlaku:
$\begin{align}
S_{n} & = 2n+3n^{2} \\
S_{1} & = 2(1)+3(1)^{2}=5 \\
S_{2} & = 2(2)+3(2)^{2}=16 \\
S_{3} & = 2(3)+3(3)^{2}=33 \\
S_{4} & = 2(4)+3(4)^{2}=56 \\
S_{5} & = 2(5)+3(5)^{2}=85 \\
\vdots
\end{align}$
Kita ketahui bahwa $U_{n}=S_{n}-S_{n-1}$, sehingga kita peroleh,
$\begin{align}
U_{1} & = 5 \\
U_{2} & = S_{2}-S_{1}=16-5=11 \\
U_{3} & = S_{3}-S_{2}=33-16=17 \\
U_{4} & = S_{4}-S_{3}=56-33=23 \\
U_{5} & = S_{5}-S_{4}=85-56=29 \\
\vdots
\end{align}$
barisan yang dihasilkan yakni $5,\ 11,\ 17,\ 23,\ 29,\ \cdots$, ini yakni barisan aritmetika dimana $a=5$, $b=6$ sehingga:
$\begin{align}
U_{6}+U_{11} & = a+5b+a+10b \\
& = 2a+15b \\
& = 2(5)+15(6) \\
& = 10+90=100
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ 100$

20. Soal UMB-PT 2013 Kode 327 (*Soal Lengkap)

Jika $S_{n}$ yakni jumlah $n$ suku pertama dari barisan aritmetika, maka $\lim\limits_{n \to \infty }\dfrac{S_{3n}}{S_{n}}=\cdots$
$\begin{align}
(A)\ & 60 \\
(B)\ & 80 \\
(C)\ & 100 \\
(D)\ & 130 \\
(E)\ & 170
\end{align}$
Alternatif Pembahasan:

Dengan tunjangan sedikit dari teorema limit takhingga dimana $\lim\limits_{x \to \infty } \dfrac{1}{x}= 0$ dan Jumlah $n$ suku pertama pada barisan aritmetika yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)$, sehingga:
$\begin{align}
\lim\limits_{n \to \infty }\dfrac{S_{3n}}{S_{n}} & = \lim\limits_{x \to \infty }\dfrac{\dfrac{3n}{2} \left(2a+(3n-1)b \right)}{\dfrac{n}{2} \left(2a+(n-1)b \right)} \\
& = \lim\limits_{n \to \infty }\dfrac{3 \left(2a+ 3bn-b \right)}{ \left(2a+bn-b \right)} \\
& = \lim\limits_{n \to \infty }\dfrac{ 6a+ 9bn-3b }{ 2a+bn-b } \times \dfrac{ \dfrac{1}{n} }{ \dfrac{1}{n}} \\
& = \lim\limits_{n \to \infty }\dfrac{ \dfrac{6a}{n}+ \dfrac{9bn}{n}-\dfrac{3b}{n} }{ \dfrac{2a}{n}+\dfrac{bn}{n}-\dfrac{b}{n} } \\
& = \dfrac{ \lim\limits_{n \to \infty } \dfrac{6a}{n}+ \lim\limits_{n \to \infty } 9b- \lim\limits_{n \to \infty }\dfrac{3b}{n} }{ \lim\limits_{n \to \infty } \dfrac{2a}{n}+\lim\limits_{n \to \infty } b- \lim\limits_{n \to \infty }\dfrac{b}{n} } \\
& = \dfrac{ 0+ 9b-0}{0+b-0 } \\
& = \dfrac{ 9b }{ b }=9
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(B)\ 9$

21. Soal SNMPTN 2012 Kode 122 (*Soal Lengkap)

Tiga buah bilangan positif membentuk barisan aritmetika dengan beda $6$. Jika bilangan yang terbesar ditambah $12$, maka diperoleh barisan geometri. Jumlah tiga bilangan tersebut adalah...
$\begin{align}
(A)\ & 26 \\
(B)\ & 27 \\
(C)\ & 28 \\
(D)\ & 29 \\
(E)\ & 30
\end{align}$
Alternatif Pembahasan:

Tiga buah bilangan positif membentuk barisan aritmetika dengan beda $6$, Misal bilangan itu yakni $a,\ a+6,\ a+12$ dan kalau $a+12+12$ barisan $a,\ a+6,\ a+12+12$ yakni barisan geometri, sehingga berlaku:
$\begin{align}
(a+6)^{2} &= a(a+12+12) \\
a^{2}+12a+36 &= a^{2}+24a \\
12a+36-24a &= 0 \\
-12a &= -36 \\
a &= 3
\end{align}$
Jumlah bilangan adalah
$\begin{align}
a+a+6+a+12 &= 3a+18 \\
&= 3(2)+18 \\
&= 27
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(B)\ 27$

22. Soal UM STIS 2011 (*Soal Lengkap)

Nilai $26^{2}-25^{2}+24^{2}-23^{2}+\cdots+4^{2}-3^{2}+2^{2}-1=\cdots$
$\begin{align}
(A)\ & 351 \\
(B)\ & 371 \\
(C)\ & 431 \\
(D)\ & 451 \\
(E)\ & 472
\end{align}$
Alternatif Pembahasan:

Jika kita perhatikan kelompok bilangan yang ada di atas yakni deret bilangan berpangkat dua, dengan mengelompokkan perhitungan dan menggunakan sifat pemfaktoran bilangan berpangakat yaitu $a^{2}-b^{2}=(a+b)(a-b)$

  • $26^{2}-25^{2}=(26+25)(26-25)=26+25$
  • $24^{2}-23^{2}=(24+23)(24-23)=24+23$
  • $22^{2}-21^{2}=(22+21)(22-21)=22+21$
  • $\vdots$
  • $4^{2}-3^{2}=(4+3)(4-3)=4+3$
  • $2^{2}-1^{2}=(2+1)(2-1)=2+1$
Dari bentuk di atas, soal kini sanggup kita tuliskan menjadi
$\begin{align}
&26+25+24+23+\cdots+4+3+2+1 \\
S_{n} &= \dfrac{n}{2} \left( 2a+(n-1)b \right) \\
S_{26} &= \dfrac{26}{2} \left( 2(26)+(26-1)(-1) \right) \\
&= 13 \left( 72-25 \right) \\
&= 13 \left( 27 \right) \\
&= 351
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ 351$

23. Soal UNBK Matematika IPA 2019 (*Soal Lengkap)

Seorang peternak ayam petelur mencatat banyak telur yang dihasilkan selama $12$ hari. Setiap hari, banyaknya telur yang dihasilkan bertambah $4$ buah. Jika hari pertama telur yang dihasilkan berjumlah $20$ buah, jumlah seluruh telur selama $12$ hari adalah...
$\begin{align}
(A)\ & 480 \\
(B)\ & 496 \\
(C)\ & 504 \\
(D)\ & 512 \\
(E)\ & 520
\end{align}$
Alternatif Pembahasan:

Pertambahan telur setiap hari yakni sama, ini sesuai dengan konsep deret aritmatika. Catatan calon guru wacana deret artimatika yang mungkin kita butuhkan yakni suku ke-$n$ yaitu $U_{n}=a+(n-1)b$ dan jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)$ atau $S_{n}=\dfrac{n}{2} \left(a+U_{n} \right)$.

Dengan suku pertama $a=20$ dan pertambahan $b=4$, maka deretnya yakni $20+24+28+\cdots$ dan jumlah $12$ suku pertama adalah:
$\begin{align}
S_{n} & = \dfrac{n}{2} \left(2a+(n-1)b \right) \\
S_{12} & = \dfrac{12}{2} \left(2(20)+(12-1)(4) \right) \\
& = 6 \left(40+44 \right) \\
& = 6 \left(84 \right) =504
\end{align}$

$\therefore$ Pilihan yang sesuai yakni $(C)\ 504$

24. Soal UNBK Matematika IPA 2019 (*Soal Lengkap)

Dalam rangka memperingati hari kemerdekaan Republik Indonesia, Desa X mengadakan lomba mengambil kelereng dari wadah dengan hukum sebagai berikut:
  • Setiap tim terdiri dari $5$ orang dan setiap anggota kelompok harus mengambil kelereng sesuai urutannya
  • Pada pengambilan putaran pertama ($5$ orang secara bergantian) hanya diperbolehkan mengambil masing-masing satu kelereng
  • Pada putaran kedua, orang pertama setiap kelompok mengambil $2$ kelereng dan selalu bertambah $3$ kelereng untuk penerima pada urutan berikutnya dalam kelompok tersebut
  • Pada putaran selanjutnya, setiap anggota tim mengambil $3$ kelereng lebih banyak dari anggota sebelumnya.
Tim A beranggotakan Andi, Beny, Cakra, Dani, dan Eko (Urutan pengambilan kelereng sesuai dengan urutan huruf awal nama). Bersamaan dengan habisnya waktu, ternyata Tim A berhasil mengumpulkan $265$ kelereng. Banyak kelereng yang berhasil diambil pada pengambilan terakhir oleh salah seorang anggota Tim A adalah...kelereng
Alternatif Pembahasan:

  • Pada pengambilan pertama, kelereng yang terambil yakni $1+1+1+1+1= 5$
  • Pada pengambilan kedua, kelereng yang terambil yakni $2+5+8+11+14=40$
Sampai pada tahap ini kelereng yang terambil sudah $5+40=45$ dan total kelereng yang belum terambil yakni $265-45=220$

Jumlah kelereng $220$ yakni jumlah keseluruhan kelereng pada pengambilan ketiga oleh Tim A dimana beda banyak kelereng yang diambil oleh setiap penerima yakni $3$ kelereng. Secara matematis sanggup kita tuliskan:
$\begin{align}
A+B+C+D+E &= 220 \\
A+(A+3)+(A+6)+(A+9)+(A+12) &= 220 \\
5A + 30 &= 220 \\
5A &= 220-30 \\
5A &= 190 \\
A &= \dfrac{190}{5} \\
A &=38 \\
\end{align}$
Banyak kelereng yang berhasil diambil Eko yakni $A+12=38+12=50$

$\therefore$ Jawaban yang sesuai yakni $50$

25. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Misalkan $(u_{n})$ yakni barisan aritmatika dengan suku pertama $a$ dan beda $2a$. Jika $u_{1}+u_{2}+u_{3}+u_{4}+u_{5}=100$, maka $u_{2}+u_{4}+u_{6}+\cdots+u_{20}=\cdots$
$\begin{align}
(A)\ & 720 \\
(B)\ & 840 \\
(C)\ & 960 \\
(D)\ & 1080 \\
(E)\ & 1200
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana deret artimatika yang mungkin kita butuhkan yakni suku ke-$n$ yaitu $U_{n}=a+(n-1)b$ dan jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$.

$\begin{align}
100 & = u_{1}+u_{2}+u_{3}+u_{4}+u_{5} \\
& = a+a+b+a+2b+a+3b+a+4b \\
& = 5a +10b \\
& = 5a +10(2a) \\
100 &= 25a \\
a &= 4 \\
b &= 8
\end{align}$

$\begin{align}
&u_{2}+u_{4}+\cdots+u_{18}+u_{20} \\
& = (a+b)+(a+3b)+\cdots+(a+17b)+(a+19b) \\
& = 10a +b(1+3+5+\cdots+19) \\
& = 10a +b(100) \\
& = 10(4) +8(100) \\
&= 840
\end{align}$

$\therefore$ Pilihan yang sesuai $(B)\ 840$

27. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Diketahui deret aritmatika:
$u_{1}+u_{3}+u_{5}+\cdots+u_{2n-1}=\dfrac{n(n+1)}{2}$, untuk setiap $n \geq 1$. Beda deret tersebut adalah...

$\begin{align}
(A)\ & \dfrac{1}{2} \\
(B)\ & 1 \\
(C)\ & \dfrac{3}{2} \\
(D)\ & 2 \\
(E)\ & \dfrac{5}{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
  • Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$
Dari $u_{1}+u_{3}+u_{5}+\cdots+u_{2n-1} = \dfrac{n(n+1)}{2}$ kita peroleh:
$\begin{align}
u_{1} &=\dfrac{1(1+1)}{2}=1 \\
u_{1}+u_{3} &= \dfrac{2(2+1)}{2}=3 \\
u_{3} &=2 \\
u_{1}+u_{3}+u_{5} &= \dfrac{3(3+1)}{2}=6 \\
u_{5} &=3 \\
\hline
b &= \dfrac{u_{p}-u_{q}}{p-q} \\
&= \dfrac{u_{5}-u_{3}}{5-3} \\
&= \dfrac{3-2}{5-3}=\dfrac{1}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ \dfrac{1}{2}$


28. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Jika perbandingan suku pertama dan suku ketiga suatu barisan aritmetika yakni $2:3$, maka perbandingan suku kedua dan suku keempat adalah...
$\begin{align}
(A)\ & 1:3 \\
(B)\ & 3:4 \\
(C)\ & 4:5 \\
(D)\ & 5:6 \\
(E)\ & 5:7
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
  • Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$
$\begin{align}
\dfrac{u_{1}}{u_{3}} &= \dfrac{2}{3} \\
\dfrac{a}{a+2b} &= \dfrac{2}{3} \\
3a &= 2a+4b \\
a &= 4b \\
\hline
\dfrac{u_{2}}{u_{4}} &= \dfrac{a+b}{a+3b} \\
&= \dfrac{4b+b}{4b+3b} \\
&= \dfrac{5b}{7b}=\dfrac{5 }{7 }
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ 5:7$

29. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Diketahui deret aritmatika dengan suku pertama $a$ dan beda $b$. Jika $b=2a$ dan $u_{1}+u_{3}+u_{5}+u_{7 }+u_{9}=90$, maka nilai dari $u_{8}+u_{10}+u_{12}+u_{14}+u_{16}=\cdots$
$\begin{align}
(A)\ & 210 \\
(B)\ & 220 \\
(C)\ & 230 \\
(D)\ & 240 \\
(E)\ & 250
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
  • Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$
$\begin{align}
90 & = u_{1}+u_{3}+u_{5}+u_{7 }+u_{9} \\
& = a+a+2b+a+4b+a+6b+a+8b \\
& = 5a +20b \\
& = 5a +20(2a) \\
90 &= 45a \\
a &= 2 \\
b &= 4
\end{align}$

$\begin{align}
& u_{8}+u_{10}+u_{12}+u_{14}+u_{16} \\
& = (a+7b)+(a+9b)+(a+11b)+(a+13b)+(a+15b) \\
& = 5a + b(7+9+11+13+15) \\
& = 5(2) + 4(55) \\
& = 10 + 220 \\
&= 230
\end{align}$

$\therefore$ Pilihan yang sesuai $(C)\ 230$

30. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Jika diketahui suku barisan aritmatika bersifat $x_{k+2}=x_{k}+p$ dengan $p \neq 0$ untuk sembarang bilangan orisinil postif $k$, maka $x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1}=\cdots$
$\begin{align}
(A)\ & \dfrac{pn^{2}+2nx_{2}}{2} \\
(B)\ & \dfrac{2pn^{2}+2nx_{2}}{2} \\
(C)\ & \dfrac{pn^{2}+2x_{2}}{2} \\
(D)\ & \dfrac{pn^{2}+ nx_{2}}{2} \\
(E)\ & \dfrac{pn^{2}+2pnx_{2}}{2}
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
  • Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$

Dari deret aritmatika $x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1}$
Deret aritmatika secara umum yakni
$S_{n}=u_{1}+u_{2}+u_{3}+u_{4}+u_{5}+u_{6}+u_{7}+\cdots$
$S_{n}=(a)+(a+b)+(a+2b)+(a+3b)+(a+4b)+(a+5b)+(a+6b)+\cdots$
Deret di atas sku pertama yakni $a$ dan beda $b$.

Jika kita pisah menjadi dua bab suku-suku genap dan susku ganjil menjadi
$S_{genap}=u_{2}+ u_{4}+ u_{6}+ u_{8}+\cdots$
$S_{genap}= (a+b)+ (a+3b)+ (a+5b)+ \cdots$
Deret di atas sanggup kita anggap deret aritmatika dengan suku pertama yakni $a+b$ dan beda $2b$

$S_{ganjil}=u_{1}+ u_{3}+ u_{5}+ u_{7}+\cdots$
$S_{ganjil}=(a)+ (a+2b)+ (a+4b)+ (a+6b)+\cdots$
Deret di atas sanggup kita anggap deret aritmatika dengan suku pertama yakni $a$ dan beda $2b$

Jika kita terapkan pada soal, yang diminta yakni jumlah suku-suku ganjil dimana suku pertama yakni $x_{3}$ dan beda $2b$
$\begin{align}
x_{k+2} & = x_{k}+p \\
x_{k+2}-x_{k} & = p \\
x_{k+2}-x_{k} & = 2b \\
\hline
p & = 2b \\
\hline
\end{align}$

$\begin{align}
S_{n} & = x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1} \\
S_{n} & = \dfrac{n}{2} \left(2a+(n-1)b \right) \\
& = \dfrac{n}{2} \left(2x_{3}+(n-1)p \right) \\
& = \dfrac{n}{2} \left(2 \left(x_{2}+b \right)+(n-1)p \right) \\
& = \dfrac{n}{2} \left(2 x_{2}+2b +pn-p \right) \\
& = \dfrac{n}{2} \left(2 x_{2}+p +pn-p \right) \\
& = \dfrac{n}{2} \left(2 x_{2} +pn \right) \\
& = \dfrac{2nx_{2}+pn^{2}}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai $(A)\ \dfrac{2nx_{2}+pn^{2}}{2}$

31. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Diketahui barisan aritmatika dengan $U_{k}$ menyatakan suku ke $k$. Jika $U_{k+2}=U_{2}+kU_{16}-2$, maka nilai $U_{6}+U_{12}+U_{18}+U_{24}=\cdots$
$\begin{align}
(A)\ & \dfrac{2}{k} \\
(B)\ & \dfrac{3}{k} \\
(C)\ & \dfrac{4}{k} \\
(D)\ & \dfrac{6}{k} \\
(E)\ & \dfrac{8}{k} \\
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana barisan dan deret artimatika yang mungkin kita butuhkan adalah:

  • Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
  • Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
Karena $U_{k}$ menyatakan suku ke $k$ pada deret aritmatika sehingga berlaku:
$\begin{align}
x_{k} & = a+(k-1)b \\
x_{k+2} & = a+(k+2-1)b \\
U_{2}+kU_{16}-2 & = a+(k+1)b \\
a+b+k(a+15b)-2 & = a+bk+b \\
ak+15bk -2 & = bk \\
ak+15bk - bk & = 2 \\
ak+14bk & = 2 \\
k \left(a +14b \right) & = 2 \\
a +14b \right & = \dfrac{2}{k} \\
\hline
U_{6}+U_{12}+U_{18}+U_{24} & = a+5b+a+11b+a+17b+a+23b \\
& = 4a+56b \\
& = 4 \left( a+14b \right) \\
& = 4 \left( \dfrac{2}{k} \right) =\dfrac{8}{k}
\end{align}$

$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{8}{k}$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan problem Matematika Dasar Barisan dan Deret Aritmetika (*Soal Dari Berbagai Sumber) (*Soal Dari Berbagai Sumber) di atas yakni coretan kreatif siswa pada
  • lembar balasan evaluasi harian matematika,
  • lembar balasan evaluasi final semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait problem alternatif penyelesaian soal barisan dan deret aritmatika sangat diharapkan😊😊

Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Pernah dengar bilangan prima terbesar atau sudah pernah membayangkan berapa bilangan prima terbesar?, mari kita lihat bagaimana bilangan prima terbesar;
atatan calon guru yang kita diskusikan dikala ini akan membahas wacana Matematika Dasar Bar Bank Soal dan Pembahasan Matematika Dasar Barisan dan Deret Aritmetika


Sumber http://www.defantri.com


EmoticonEmoticon